Prospects for nitrogen fertilization management of corn crops: a review of modern concepts

Authors

DOI:

https://doi.org/10.31210/spi2025.28.04.11

Keywords:

corn, fertilization, fertilizers, nitrogen, inhibitors, humin

Abstract

The main purpose of this review was the problem of optimizing nitrogen fertilization of corn crops in the light of recent trends, taking into account the requirements of the ecological and economic approach to the development of cultivation technologies. Based on the review of the research results by Ukrainian and foreign scientists, modern methods of nitrogen fertilization management are described. In particular, this concerns the differentiated application of nitrogen fertilizers using complex organic-mineral fertilizers, which comprise humic compounds, nitrification inhibitors and urease inhibitors. The review draws attention to controversial issues of corn crops’ fertilization and contradictions regarding the effectiveness of the use. These include the rate of nitrification of the soil rhizosphere, inhibition of nitrification processes and the effectiveness of the impact on yield formation. The information on the efficacy of using 3, 4-dimethylpyrazole phosphate and thiophosphoric triamide as nitrification inhibitors from economic and environmental points of view is given in the article. A brief analysis of the use of the group of 2-(3, 4-dimethyl-1H-pyrazol-1-yl) isomeric mixture of succinic acid, nitrapyrin or pronitridine is conducted. Attention is paid to the peculiarities of the behavior of nitrification inhibitor substances depending on the properties of soils and climatic factors. The conclusion is made as to the simultaneous use of two strategies – the application of urease inhibitor and nitrification inhibitor. The presented review of scientific sources does not indicate the unanimity of opinions concerning the use of nitrogen inhibitors. Scientists are overwhelmingly inclined to the usefulness of applying inhibitors to reduce greenhouse gas emissions into the atmosphere and the economic efficiency of reducing the rates of nitrogen fertilizers’ application, but there are also data on the questionable impact of inhibitors on nitrogen losses into the atmosphere and their impact on yield formation. On the one hand, nitrogen inhibitors can be crucial in reducing nutrient losses and increasing the effectiveness of the use of expensive nitrogen fertilizers and raising plant productivity by 41–79 %, especially when applying stabilized nitrogen fertilizers of increased efficacy. They play an important role in the 4R cultivation concept, which envisages ecological and economic approach to growing crops. On the other hand, while reducing nitrogen losses, they do not increase yields in any way, especially in combination with the use of such fertilizers.

References

Kalenska, S. M., & Hovenko, R. V. (2022). Productivity of corn as affected by the accumulation of heat units and different nitrogen fertilizers. Scientific Papers of the Institute of Bioenergy Crops and Sugar Beet, 30, 33–43. https://doi.org/10.47414/np.30.2022.268943

Hotskyi, Ya. H., & Stepaniuk, A. R. (2019). Advantages of use of the granular organic-mineral slow release fertilizers. Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical Engineering, Ecology and Resource Saving, 1, 61–67. https://doi.org/10.20535/2617-9741.1.2019.171044

Ashraf, M. N., Aziz, T., Maqsood, M. A., Bilal, H. M., Raza, S., Zia, M., Mustafa, A., Xu, M., & Wang, Y. (2025). Evaluating organic materials coating on urea as potential nitrification inhibitors for enhanced nitrogen recovery and growth of maize (Zea mays). International Journal of Agriculture and Biology, 22 (5), 1101–1108. https://doi.org/10.17957/ijab/15.1175

Muntian, S. V., & Fedorchuk, M. I. (2024). Vplyv meteorolohichnykh umov na urozhainist pshenytsi ozymoi, kukurudzyta ripaku ozymoho z vykorystanniam inhibitora nitryfikatsii za poiednanoho vykorystannia z KAS‑32. Ahrarni Innovatsii, 21, 64–69. https://doi.org/10.32848/agrar.innov.2023.21.9 [in Ukrainian]

Muller, J., De Rosa, D., Friedl, J., De Antoni Migliorati, M., Rowlings, D., Grace, P., & Scheer, C. (2022). Combining nitrification inhibitors with a reduced N rate maintains yield and reduces N2O emissions in sweet corn. Nutrient Cycling in Agroecosystems, 125 (2), 107–121. https://doi.org/10.1007/s10705-021-10185-y

Alonso-Ayuso, M., Gabriel, J. L., & Quemada, M. (2016). Nitrogen use efficiency and residual effect of fertilizers with nitrification inhibitors. European Journal of Agronomy, 80, 1–8. https://doi.org/10.1016/j.eja.2016.06.008

Wang, X.-L., Duan, P.-L., Yang, S.-J., Liu, Y.-H., Qi, L., Shi, J., Li, X.-L., Song, P., & Zhang, L.-X. (2020). Corn compensatory growth upon post-drought rewatering based on the effects of rhizosphere soil nitrification on cytokinin. Agricultural Water Management, 241, 106436. https://doi.org/10.1016/j.agwat.2020.106436

Li, X., Zhang, X., Wang, S., Hou, W., & Yan, L. (2023). The combined use of liquid fertilizer and urease/nitrification inhibitors on maize yield, nitrogen loss and utilization in the Mollisol region. Plants, 12 (7), 1486. https://doi.org/10.3390/plants12071486

Atav, V., Gürbüz, M. A., Kayali, E., & Yalinkiliç, E. (2024). Optimizing nitrogen management in maize (Zea mays L.) using urease and nitrification inhibitors. Research Square. https://doi.org/10.21203/rs.3.rs-4455360/v1

Regueiro, I., Siebert, P., Liu, J., Müller-Stöver, D., & Jensen, L. S. (2020). Acidified animal manure products combined with a nitrification inhibitor can serve as a starter fertilizer for maize. Agronomy, 10 (12), 1941. https://doi.org/10.3390/agronomy10121941

Lasisi, A. A., Akinremi, O. O., & Kumaragamage, D. (2021). Efficiency of fall versus spring applied urea‐based fertilizers treated with urease and nitrification inhibitors II. Crop yield and nitrogen use efficiency. Soil Science Society of America Journal, 85 (2), 299–313. Portico. https://doi.org/10.1002/saj2.20126

Lucas, F. T., Borges, B. M. M. N., & Coutinho, E. L. M. (2019). Nitrogen fertilizer management for maize production under tropical climate. Agronomy Journal, 111 (4), 2031–2037. https://doi.org/10.2134/agronj2018.10.0665

Zhao, Z., Wu, D., Bol, R., Shi, Y., Guo, Y., Meng, F., & Wu, W. (2017). Nitrification inhibitor’s effect on mitigating N2O emissions was weakened by urease inhibitor in calcareous soils. Atmospheric Environment, 166, 142–150. https://doi.org/10.1016/j.atmosenv.2017.07.034

Allende-Montalbán, R., Martín-Lammerding, D., del Mar Delgado, M., Porcel, M. A., & Gabriel, J. L. (2022). Nitrate leaching in maize (Zea mays L.) and wheat (Triticum aestivum L.) irrigated cropping systems under nitrification inhibitor and/or intercropping effects. Agriculture, 12 (4), 478. https://doi.org/10.3390/agriculture12040478

Guardia, G., Vallejo, A., Cardenas, L. M., Dixon, E. R., & García-Marco, S. (2018). Fate of 15 N-labelled ammonium nitrate with or without the new nitrification inhibitor DMPSA in an irrigated maize crop. Soil Biology and Biochemistry, 116, 193–202. https://doi.org/10.1016/j.soilbio.2017.10.013

Guardia, G., Cangani, M. T., Andreu, G., Sanz-Cobena, A., García-Marco, S., Álvarez, J. M., Recio-Huetos, J., & Vallejo, A. (2017). Effect of inhibitors and fertigation strategies on GHG emissions, NO fluxes and yield in irrigated maize. Field Crops Research, 204, 135–145. https://doi.org/10.1016/j.fcr.2017.01.009

Havryliuk, V. A. (2017). Shliakhy mozhlyvoho zabrudnennia na-vkolyshnoho seredovyshcha dobryvamy i zakhody shchodo yoho zapobihannia. Ekolohichni Notatky, 5, 77–84. [in Ukrainian]

Jackson, K. (2019). Impact of nitrification inhibitor use on corn yield and soil nitrogen levels from liquid hog manure applied at various fall timings / Master's thesis. University of Guelph, Guelph, Ontario, Canada.

Ren, B., Ma, Z., Zhao, B., Liu, P., & Zhang, J. (2022). Influences of split application and nitrification inhibitor on nitrogen losses, grain yield, and net income for summer maize production. Frontiers in Plant Science, 13, 982373. https://doi.org/10.3389/fpls.2022.982373

Dong, D., Yang, W., Sun, H., Kong, S., & Xu, H. (2022). Effects of animal manure and nitrification inhibitor on N2O emissions and soil carbon stocks of a maize cropping system in Northeast China. Scientific Reports, 12 (1), 15202. https://doi.org/10.1038/s41598-022-19592-9

Corrêa, J. C., Grohskopf, M. A., Nicoloso, R. da S., Lourenço, K. S., & Martini, R. (2016). Organic, organomineral, and mineral fertilizers with urease and nitrification inhibitors for wheat and corn under no-tillage. Pesquisa Agropecuária Brasileira, 51 (8), 916–924. https://doi.org/10.1590/s0100-204x2016000800003

Dawar, K., Sardar, K., Zaman, M., Müller, C., Sanz-Cobena, A., Khan, A., Borzouei, A., & Pérez-Castillo, A. G. (2021). Effects of the nitrification inhibitor nitrapyrin and the plant growth regulator gibberellic acid on yield-scale nitrous oxide emission in maize fields under hot climatic conditions. Pedosphere, 31 (2), 323–331. https://doi.org/10.1016/s1002-0160(20)60076-5

Singh, G., & Nelson, K. A. (2019). Pronitridine and nitrapyrin with anhydrous ammonia for corn. Journal of Agricultural Science, 11 (4), 13. https://doi.org/10.5539/jas.v11n4p13

Kaur, H., Nelson, K. A., Wikle, C. K., Ferguson, R., & Singh, G. (2024). Nitrogen fertilizer and pronitridine rates for corn production in the Midwest U.S. Field Crops Research, 306, 109200. https://doi.org/10.1016/j.fcr.2023.109200

Vetsch, J. A., Randall, G. W., & Fernández, F. G. (2019). Nitrate loss in subsurface drainage from a corn–soybean rotation as affected by nitrogen rate and nitrapyrin. Journal of Environmental Quality, 48 (4), 988–994. https://doi.org/10.2134/jeq2018.11.0415

Degenhardt, R. F., Juras, L. T., Smith, L. R. A., MacRae, A. W., Ashigh, J., & McGregor, W. R. (2016). Application of nitrapyrin with banded urea, urea ammonium nitrate, and ammonia delays nitrification and reduces nitrogen loss in Canadian soils. Crop, Forage & Turfgrass Management, 2 (1), 1–11. https://doi.org/10.2134/cftm2016.03.0027

Johnson II, F. E., Nelson, K. A., & Motavalli, P. P. (2016). urea fertilizer placement impacts on corn growth and nitrogen utilization in a poorly-drained claypan soil. Journal of Agricultural Science, 9 (1), 28. https://doi.org/10.5539/jas.v9n1p28

Cook, R., Nail, A., Vigardt, A., Trlica, A., Hagarty, B., Williams, T., & Wolt, J. (2015). Meta-analysis of enhanced efficiency fertilizers in corn systems in the Midwest. International Plant Nutritution Instute Report.

Omonode, R. A., & Vyn, T. J. (2019). Tillage and nitrogen source impacts on relationships between nitrous oxide emission and nitrogen recovery efficiency in corn. Journal of Environmental Quality, 48 (2), 421–429. https://doi.org/10.2134/jeq2018.05.0188

Rácz, D., Gila, B., Horváth, É., Illés, Á., & Széles, A. (2021). The efficiency of nitrogen stabilizer at different soil temperatures on the physiological development and productivity of maize (Zea mays L.). Agronomy Research, 19 (4), 1888–1900.

Guardia, G., Sanz-Cobena, A., Sanchez-Martín, L., Fuertes-Mendizábal, T., González-Murua, C., Álvarez, J. M., Chadwick, D., & Vallejo, A. (2018). Urea-based fertilization strategies to reduce yield-scaled N oxides and enhance bread-making quality in a rainfed Mediterranean wheat crop. Agriculture, Ecosystems & Environment, 265, 421–431. https://doi.org/10.1016/j.agee.2018.06.033

Martins, M. R., Sant’Anna, S. A. C., Zaman, M., Santos, R. C., Monteiro, R. C., Alves, B. J. R., Jantalia, C. P., Boddey, R. M., & Urquiaga, S. (2017). Strategies for the use of urease and nitrification inhibitors with urea: Impact on N2O and NH3 emissions, fertilizer-15N recovery and maize yield in a tropical soil. Agriculture, Ecosystems & Environment, 247, 54–62. https://doi.org/10.1016/j.agee.2017.06.021

Kryvenko, A. I., & Martkoplishvili, M. M. (2020). Peculiarities of corn yield formation depending on the influence of elements of growing technology. Scientific Papers of the Institute of Bioenergy Crops and Sugar Beet, 28, 201–209. https://doi.org/10.47414/np.28.2020.230241

Chajka, O. V., & Levchenko, S. O. (2024). The influence of the nitrification inhibitor DMPP on the processes of nitrogen distribution in the soil. Visnyk Agrarnoi Nauky, 102 (4), 53–59. https://doi.org/10.31073/agrovisnyk202404-08

Drury, C. F., Yang, X., Reynolds, W. D., Calder, W., Oloya, T. O., & Woodley, A. L. (2017). Combining urease and nitrification inhibitors with incorporation reduces ammonia and nitrous oxide emissions and increases corn yields. Journal of Environmental Quality, 46 (5), 939–949. https://doi.org/10.2134/jeq2017.03.0106

Ren, B., Huang, Z., Liu, P., Zhao, B., & Zhang, J. (2023). Urea ammonium nitrate solution combined with urease and nitrification inhibitors jointly mitigate NH3 and N2O emissions and improves nitrogen efficiency of summer maize under fertigation. Field Crops Research, 296, 108909. https://doi.org/10.1016/j.fcr.2023.108909

Basso, C. J., Pinto, M. A. B., Gonzatto, R., Pujol, S. B., & Souza, F. M. de. (2020). Management of liquid swine manure: impact on mineral nitrogen dynamics and corn yield. Pesquisa Agropecuária Tropical, 50, e64790. https://doi.org/10.1590/1983-40632020v5064790

Gonzatto, R., Aita, C., Bélanger, G., Chantigny, M. H., Miola, E. C. C., Pujol, S. B., Dessbesel, A., & Giacomini, S. J. (2017). Response of no‐till grain crops to pig slurry application methods and a nitrification inhibitor. Agronomy Journal, 109 (4), 1687–1696. https://doi.org/10.2134/agronj2016.09.0547

Tian, Z., Wang, J. J., Liu, S., Zhang, Z., Dodla, S. K., & Myers, G. (2015). Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region. Science of The Total Environment, 533, 329–338. https://doi.org/10.1016/j.scitotenv.2015.06.147

Gonzatto, R., Chantigny, M. H., Aita, C., Giacomini, S. J., Rochette, P., Angers, D. A., Pujol, S. B., Zirbes, E., De Bastiani, G. G., & Ludke, R. C. (2016). Injection and nitrification inhibitor improve the recovery of pig slurry ammonium nitrogen in grain crops in Brazil. Agronomy Journal, 108 (3), 978–988. https://doi.org/10.2134/agronj2015.0462

Chiodini, M. E., Perego, A., Carozzi, M., & Acutis, M. (2019). The nitrification inhibitor Vizura® reduces N2O emissions when added to digestate before injection under irrigated maize in the Po Valley (Northern Italy). Agronomy, 9 (8), 431. https://doi.org/10.3390/agronomy90804310

Ahmed, M., Yu, W., Lei, M., Raza, S., Elrys, A. S., & Zhou, J. (2023). Effect of urease and nitrification inhibitors on nitrogen transformation and nitrogen use efficiency of rain-fed summer maize (Zea mays) at loess plateau of China. International Journal of Agriculture and Biology, 30 (5), 317–328. https://doi.org/10.17957/ijab/15.2090

Cassim, B. M. A. R., Besen, M. R., Kachinski, W. D., Macon, C. R., de Almeida Junior, J. H. V., Sakurada, R., Inoue, T. T., & Batista, M. A. (2022). Nitrogen fertilizers technologies for corn in two yield environments in South Brazil. Plants, 11 (14), 1890. https://doi.org/10.3390/plants11141890

Liu, S., Wang, X., Yin, X., Savoy, H. J., McClure, A., & Essington, M. E. (2019). Ammonia Volatilization loss and corn nitrogen nutrition and productivity with efficiency enhanced UAN and urea under no-tillage. Scientific Reports, 9 (1), 6610. https://doi.org/10.1038/s41598-019-42912-5

Pawlick, A. A., Wagner-Riddle, C., Parkin, G. W., & Berg, A. A. (2019). Assessment of nitrification and urease inhibitors on nitrate leaching in corn (Zea mays L.). Canadian Journal of Soil Science, 99 (1), 80–91. https://doi.org/10.1139/cjss-2018-0110

Ložek, O., & Slamka, P. (2016). Effect of nitrogen-sulphur nutrition and inhibitors of nitrification on the yield and quality of maize grain. Acta Fytotechnica et Zootechnica, 19 (2), 45–50. https://doi.org/10.15414/afz.2016.19.02.45-50

Venterea, R. T., Coulter, J. A., & Dolan, M. S. (2016). Evaluation of intensive “4R” strategies for decreasing nitrous oxide emissions and nitrogen surplus in rainfed corn. Journal of Environmental Quality, 45 (4), 1186–1195. https://doi.org/10.2134/jeq2016.01.0024

Drulis, P., Kriaučiūnienė, Z., & Liakas, V. (2022). The Influence of different nitrogen fertilizer rates, urease inhibitors and biological preparations on maize grain yield and yield structure elements. Agronomy, 12 (3), 741. https://doi.org/10.3390/agronomy12030741

Purwanto, Minardi, S., & Supriyadi (2015). Optimization of Nitrogen Fertilization Input on Zea mays L. cultivation through the biological inhibition of nitrification. Agricultural Sciences, 06 (2), 201–207. https://doi.org/10.4236/as.2015.62019

Jenkins, M., Locke, M., Reddy, K., McChesney, D. S., & Steinriede, R. (2017). Glyphosate applications, glyphosate resistant corn, and tillage on nitrification rates and distribution of nitrifying microbial communities. Soil Science Society of America Journal, 81 (6), 1371–1380. https://doi.org/10.2136/sssaj2017.02.0063

Drulis, P., Kriaučiūnienė, Z., & Liakas, V. (2022). The effect of combining N-fertilization with urease inhibitors and biological preparations on maize biological productivity. Agronomy, 12 (10), 2264. https://doi.org/10.3390/agronomy12102264

De Laporte, A., Banger, K., Weersink, A., Wagner-Riddle, C., Grant, B., & Smith, W. (2021). Economic and environmental nitrate leaching consequences of 4R nitrogen management practices including use of inhibitors for corn production in Ontario. Journal of Environmental Management, 300, 113739. https://doi.org/10.1016/j.jenvman.2021.113739

Souza, T. L. de, Guelfi, D. R., Silva, A. L., Andrade, A. B., Chagas, W. F. T., & Cancellier, E. L. (2017). Ammonia and carbon dioxide emissions by stabilized conventional nitrogen fertilizers and controlled release in corn crop. Ciência e Agrotecnologia, 41 (5), 494–510. https://doi.org/10.1590/1413-70542017415003917

Qi, Z., Dong, Y., He, M., Wang, M., Li, Y., & Dai, X. (2021). Coated, stabilized enhanced-efficiency nitrogen fertilizers: preparation and effects on maize growth and nitrogen utilization. Frontiers in Plant Science, 12, 792262. https://doi.org/10.3389/fpls.2021.792262

Abalos, D., Jeffery, S., Drury, C. F., & Wagner-Riddle, C. (2016). Improving fertilizer management in the U.S. and Canada for N2O mitigation: Understanding potential positive and negative side-effects on corn yields. Agriculture, Ecosystems & Environment, 221, 214–221. https://doi.org/10.1016/j.agee.2016.01.044

Gagnon, B., Ziadi, N., & Bélanger, G. (2019). Nitrogen nutrition indicators in corn fertilized with different urea‐nitrogen forms. Agronomy Journal, 111 (6), 3281–3290. https://doi.org/10.2134/agronj2018.10.0675

Santos, C., Pinto, S. I. do C., Guelfi, D., Rosa, S. D., da Fonseca, A. B., Fernandes, T. J., Ferreira, R. A., Satil, L. B., Nunes, A. P. P., & e Silva, K. P. (2023). Corn cropping system and nitrogen fertilizers technologies affect ammonia volatilization in brazilian tropical soils. Soil Systems, 7 (2), 54. https://doi.org/10.3390/soilsystems7020054

Torralbo, F., Boardman, D., Houx, J. H., & Fritschi, F. B. (2022). Distinct enhanced efficiency urea fertilizers differentially influence ammonia volatilization losses and maize yield. Plant and Soil, 475 (1–2), 551–563. https://doi.org/10.1007/s11104-022-05387-4

Cui, X., Wang, J., Wang, J., Li, Y., Lou, Y., Zhuge, Y., & Dong, Y. (2022). Soil available nitrogen and yield effect under different combinations of urease/nitrate inhibitor in wheat/maize rotation system. Agronomy, 12 (8), 1888. https://doi.org/10.3390/agronomy12081888

Neels, W., Jhala, A., Maharjan, B., Patel, S., Slator, G., & Iqbal, J. (2024). Nitrogen source affects in‐season nitrogen availability more than nitrification inhibitor and herbicide in a fine‐textured soil. Soil Science Society of America Journal, 88 (2), 419–433. https://doi.org/10.1002/saj2.20617

Vogel, C., Sekine, R., Huang, J., Steckenmesser, D., Steffens, D., Huthwelker, T., Borca, C. N., Pradas del Real, A. E., Castillo-Michel, H., & Adam, C. (2020). Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize. Science of The Total Environment, 715, 136895. https://doi.org/10.1016/j.scitotenv.2020.136895

Malakshahi Kurdestani, A., Francioli, D., Ruser, R., Piccolo, A., Maywald, N. J., Chen, X., & Müller, T. (2024). Optimizing nitrogen fertilization in maize: the impact of nitrification inhibitors, phosphorus application, and microbial interactions on enhancing nutrient efficiency and crop performance. Frontiers in Plant Science, 15, 1451573. https://doi.org/10.3389/fpls.2024.1451573

Fan, D., He, W., Smith, W. N., Drury, C. F., Jiang, R., Grant, B. B., Shi, Y., Song, D., Chen, Y., Wang, X., He, P., & Zou, G. (2022). Global evaluation of inhibitor impacts on ammonia and nitrous oxide emissions from agricultural soils: A meta‐analysis. Global Change Biology, 28 (17), 5121–5141. https://doi.org/10.1111/gcb.16294

ORCID

Downloads

Published

2025-12-26

How to Cite

Kuriacha, K. (2025). Prospects for nitrogen fertilization management of corn crops: a review of modern concepts. Scientific Progress & Innovations, 28(4), 80–86. https://doi.org/10.31210/spi2025.28.04.11

Issue

Section

AGRICULTURE. PLANT CULTIVATION