Assessment of the economic and energy efficiency of giant miscanthus biomass production depending on cultivation methods and crop fertilization
DOI:
https://doi.org/10.31210/spi2025.28.04.12Keywords:
giant miscanthus, biofuel production, biomass productivity, binary plantations, nitrogen fertilization, energy efficiency, economic efficiency, sustainable agricultureAbstract
In the context of the global energy transition and the depletion of fossil resources, research focused on the comprehensive justification for using alternative energy sources is becoming particularly relevant. Among perennial energy crops considered a sustainable source of biofuel, Giant Miscanthus (Miscanthus × giganteus) occupies a special position due to its high adaptability and ability to produce a substantial amount of biomass. Optimizing its cultivation technology is a key task for improving the economic and energy efficiency of its production. The aim of the study was to determine the efficiency of Giant Miscanthus biomass production depending on the improvement of cultivation technology in binary plantations with a legume component. The research was conducted during 2020–2024 on podzolized chernozems under the soil and climatic conditions of the Poltava region. Field experiments were established according to a two-factor design using a randomized block method. The accounting plot area was 50 m², with four replications. In binary Miscanthus-lupine plantations, various rates of spring nitrogen fertilization (from N0 to N120) were applied. The energy efficiency of Miscanthus production was assessed considering the energy content of the biomass and the energy inputs required for production. The results showed that binary plantations ensured higher biomass productivity (up to 21.2 t/ha) compared with monoculture plantations (up to 19.9 t/ha), primarily due to more efficient nutrient utilization. The highest economic indicators in binary plantations were recorded at N30 (profit – 15651.2 UAH/ha; profitability – 179.3%), whereas monoculture plantations were most efficient at N90 (profit – 14238.8 UAH/ha; profitability – 164.7%). The maximum energy efficiency coefficient in binary plantations was obtained at N30-60 (1.91–1.95), significantly exceeding the corresponding values in monocultures (1.18–1.23). These findings confirm the feasibility of using binary cropping systems and differentiated nitrogen fertilization as effective measures to increase Miscanthus biomass productivity and energy output. It was established that binary plantations of Giant Miscanthus with a legume component are more productive and economically efficient than monocultures. The optimized cultivation technology, particularly rational nitrogen fertilization, allows for a significant increase in yield, profitability, and overall energy efficiency of biomass production. These results are of considerable importance for the further implementation of Miscanthus as a promising biofuel source in Ukraine, especially on low-productivity lands, thereby contributing to energy independence and the sustainable development of regions.
References
Lohosha, R., Palamarchuk, V., Krychkovskyi, V., Kolisnyk, O., & Vasyliev, O. (2025). Specifics of cultivation, productivity, and energy efficiency of miscanthus giganteus for solid biofuel production. Polityka Energetyczna – Energy Policy Journal, 28 (1), 99–112. https://doi.org/10.33223/epj/196384
Shepherd, A., Littleton, E., Clifton‐Brown, J., Martin, M., & Hastings, A. (2020). Projections of global and UK bioenergy potential from Miscanthus × giganteus – Feedstock yield, carbon cycling and electricity generation in the 21st century. Global Change Biology Bioenergy, 12 (4), 287–305. https://doi.org/10.1111/gcbb.12671
Littleton, E. W., Shepherd, A., Harper, A. B., Hastings, A. F. S., Vaughan, N. E., Doelman, J., van Vuuren, D. P., & Lenton, T. M. (2023). Uncertain effectiveness of Miscanthus bioenergy expansion for climate change mitigation explored using land surface, agronomic and integrated assessment models. Global Change Biology Bioenergy, 15 (3), 303–318. https://doi.org/10.1111/gcbb.12982
Kupchuk, I., Yemchyk, T., Gontaruk, Y., Tarasova, O., Shevchuk, H., & Okhota, Y. (2023). Production of biofuels as a direction to ensure energy independence of Ukraine under martial law. Monograph. International Science Group ISG – Konf.com. https://doi.org/10.46299/979-8-89269-755-2
Kaletnik, H. M. (2013). Rozvytok rynku biopalyv v Ukraini. Bioenerhetyka, 1, 11–16. [in Ukrainian]
Dey, S., Sreenivasulu, A., Veerendra, G. T. N., Rao, K. V., & Babu, P. S. S. A. (2022). Renewable energy present status and future potentials in India: An overview. Innovation and Green Development, 1 (1), 100006. https://doi.org/10.1016/j.igd.2022.100006
Heaton, E. A., Dohleman, F. G., Miguez, A. F., Juvik, J. A., Lozovaya, V., Widholm, J., Zabotina, O. A., McIsaac, G. F., David, M. B., Voigt, T. B., Boersma, N. N., & Long, S. P. (2010). Miscanthus. Advances in Botanical Research, 56, 75–137. https://doi.org/10.1016/b978-0-12-381518-7.00003-0
Roik, M. V., Sinchenko, V. M., Ivashchenko, O. O., Pyrkin, V. I., Kvak, V. M., Humentyk, M. Ya., Hanzhenko, O. M., Sabluk, V. T., Hryshchenko, O. M., Fuchylo, Ya. D., Honcharuk, H. S., Furman, V. A., Suslyk, L. O., Makukh, Ya. P., Remeniuk, S. O., Ivanina, V. V., Fursa, A. V., Bondar, V. S., Bekh, N. S., Kotsar, M. I., Tsvihun, H. V., Kovalchuk, N. S., Nediak, T. M., Vorozhko, S. P., Doronin, V. A., Dryha, V. V., Buzynnyi, M. V., Dubovyi, Yu. P., Pedos, V. P., Balahura, O. V., Smirnykh, V. M., Zaimenko, N. V., Rakhmetov, D. B., Shcherbakova, T. O., Rakhmetov, S. D., & Katelevskyi, V. M. (2019). Miskantus v Ukraini. Kyiv: TOV «TsP «Komprint» [in Ukrainian]
Kurylo, V. L., Rakhmetov, D. B., & Kulyk, M. I. (2018). Biological features and potential of yield of energy cultures of the family of thin-skinned in the conditions of Ukraine. Scientific Progress & Innovations, 1, 11–17. https://doi.org/10.31210/visnyk2018.01.01
Kulyk, M. I., Kurylo, V. L., Kalіnichenko, О. V., & Galytska, M. А. (2019). Plant energy resources: agroecological, economic and energy aspects: monograph. Poltava: Astraya
Prysiazhniuk, O. I., & Honcharuk, O. M. (2022). Peculiarities of the biomass yield and quality formation in giant miscanthus under the effect of agricultural technology components. Scientific Papers of the Institute of Bioenergy Crops and Sugar Beet, 30, 53–60. https://doi.org/10.47414/np.30.2022.268944
Vir’ovka, V., Opanasenko, O., & Perets’, S. (2019). Features of growing Miscanthus large on sewed organogenic soils of Left-bank Forest-steppe. Visnyk Agrarnoi Nauky, 97 (8), 60–66. https://doi.org/10.31073/agrovisnyk201908-10
Nedilska, U. I. (2023). Rist, rozvytok i produktyvnist miskantusu hihantskoho. Podilian Bulletin Agriculture Engineering Economics, 31, 15–22. https://doi.org/10.37406/2706-9052-2019-2-2 [in Ukrainian]
Milovanović, J., Babović, N., Đorđević, A., Spasić, S., Marišová, E., Končeková, L., Kotrla, M., & Tóthová, M. (2011). External and internal factors influencing the growth and biomass production of short rotation woods genus Salix and perennial grass Miscanthus. Belgrade: Faculty of Applied ecology FUTURA, Singidunum University Belgrade.
Skachok, L. M., Potapenko, L. V., & Horbachenko, N. I. (2018). Influence of fertilizing systems and microbial preparations on capacity of bioenergetic cultures. Agriciltural Microbiology, 28, 70–76. https://doi.org/10.35868/1997-3004.28.70-76
Vergun, O., Rakhmetov, D., Rakhmetova, S., & Fishchenko, V. (2019). Distribution of nutrients in different organs of plants of Miscanthus Anderss. genotypes. Plant Introduction, 81, 75–81.
Dubis, B., Jankowski, K. J., Załuski, D., Bórawski, P., & Szempliński, W. (2019). Biomass production and energy balance of Miscanthus over a period of 11 years: A case study in a large‐scale farm in Poland. Global Change Biology Bioenergy, 11 (10), 1187–1201. Portico. https://doi.org/10.1111/gcbb.12625
Clifton-Brown, J. C., Lewandowski, I., Andersson, B., Basch, G., Christian, D. G., Kjeldsen, J. B., Jørgensen, U., Mortensen, J. V., Riche, A. B., Schwarz, K.-U., Tayebi, K., & Teixeira, F. (2004). Performance of Miscanthus species and hybrids in Europe. Agronomy Journal, 94, 1013–1019.
Clifton-Brown, J., Schwarz, K.-U., Awty-Carroll, D., Iurato, A., Meyer, H., Greef, J., Gwyn, J., Mos, M., Ashman, C., Hayes, C., Huang, L., Norris, J., Rodgers, C., Scordia, D., Shafiei, R., Squance, M., Swaller, T., Youell, S., Cosentino, S., Flavell, R., Donnison, I., & Robson, P. (2019). Breeding strategies to improve Miscanthus as a sustainable source of biomass for bioenergy and biorenewable products. Agronomy, 9 (11), 673. https://doi.org/10.3390/agronomy9110673
Lewandowski, I., Clifton-Brown, J. C., Scurlock, J. M. O., & Huisman, W. (2000). Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy, 19 (4), 209–227. https://doi.org/10.1016/s0961-9534(00)00032-5
Lewandowski, I., Scurlock, J. M. O., Lindvall, E., & Christou, M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 25 (4), 335–361. https://doi.org/10.1016/s0961-9534(03)00030-8
Khanna, M., Dhungana, B., & Clifton-Brown, J. (2008). Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass and Bioenergy, 32 (6), 482–493. https://doi.org/10.1016/j.biombioe.2007.11.003
Boehmel, C., Lewandowski, I., & Claupein, W. (2008). Comparing annual and perennial energy cropping systems with different management intensities. Agricultural Systems, 96 (1–3), 224–236. https://doi.org/10.1016/j.agsy.2007.08.004
Kiesel, A., Nunn, C., Iqbal, Y., Van der Weijde, T., Wagner, M., Özgüven, M., Tarakanov, I., Kalinina, O., Trindade, L. M., Clifton-Brown, J., & Lewandowski, I. (2017). Site-Specific management of miscanthus genotypes for combustion and anaerobic digestion: A comparison of energy yields. Frontiers in Plant Science, 8, 347. https://doi.org/10.3389/fpls.2017.00347
Styles, D., Thorne, F., & Jones, M. B. (2008). Energy crops in Ireland: An economic comparison of willow and Miscanthus production with conventional farming systems. Biomass and Bioenergy, 32 (5), 407–421. https://doi.org/10.1016/j.biombioe.2007.10.012
Angelini, L. G., Ceccarini, L., Nassi o Di Nasso, N., & Bonari, E. (2009). Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance. Biomass and Bioenergy, 33 (4), 635–643. https://doi.org/10.1016/j.biombioe.2008.10.005
Hastings, A., Clifton‐Brown, J., Wattenbach, M., Mitchell, C. P., Stampfl, P., & Smith, P. (2009). Future energy potential of Miscanthus in Europe. Global Change Biology Bioenergy, 1 (2), 180–196. https://doi.org/10.1111/j.1757-1707.2009.01012.x
Haines, S. A., Gehl, R. J., Havlin, J. L., & Ranney, T. G. (2014). Nitrogen and phosphorus fertilizer effects on establishment of giant Miscanthus. BioEnergy Research, 8 (1), 17–27. https://doi.org/10.1007/s12155-014-9499-4
Searcy, E., Flynn, P., Ghafoori, E., & Kumar, A. (2007). The relative cost of biomass energy transport. Applied Biochemistry and Biotechnology, 137, 639–652. https://doi.org/10.1007/s12010-007-9085-8
Boakye-Boaten, N. A., Kurkalova, L., Xiu, S., & Shahbazi, A. (2017). Techno-economic analysis for the biochemical conversion of Miscanthus x giganteus into bioethanol. Biomass and Bioenergy, 98, 85–94. https://doi.org/10.1016/j.biombioe.2017.01.017
Prysiazhniuk, O. I., Roik, M. V., Sinchenko, V. M., Cherniak, M. O., Maliarenko, O. A., & Kononiuk, N. O. (2024). Tsyfrovi tekhnolohii v ahronomii – vid teorii do praktyky: monohrafiia. Vinnytsia: Tvory [in Ukrainian]
Humentyk, M. Ya. (red.). (2024). Tekhnolohii vyroshchuvannia bioenerhetychnykh kultur. Kyiv: Komprynt [in Ukrainian]
Kaletnik, G., & Pryshliak, N. (2021). Development of the biofuel industry as a determinant of sustainable development of Ukraine. Ekonomika APK, 316 (2), 71–81. https://doi.org/10.32317/2221-1055.202102071
Kulyk, M. I. (Ed.). (2023). Enerhetychni kultury: sortyment, biolohiia, ekolohiia, ahrotekhnolohiia. Poltava: Astraia [in Ukrainian]
Dekovets, V. O., Kulyk, M. I., & Halytska, M. A. (2022). Biolohizatsiia tekhnolohii vyroshchuvannia miskantusu hihantskoho na biopalyvo. Ahrarni Innovatsii, 10, 23–28. https://doi.org/10.32848/agrar.innov.2021.10.4 [in Ukrainian]
Kulyk, M. I., Rozhkov, A. O., Kalinichenko, O. V., Taranenko, A. O., & Onopriienko, O. V. (2020). Effect of winter wheat variety, hydrothermal coefficient (HTC) and thousand kernel weight (TKW) on protein content, grain and protein yield. Agronomy Research, 18 (3), 2103–2116. https://doi.org/10.15159/ar.20.187
Rozhkov, A. O. (Ed.). (2016). Doslidna sprava v ahronomii: navch. posibnyk: u 2 knyhakh. – Knyha 1. Teoretychni aspekty doslidnoi spravy. Kharkiv: Maidan [in Ukrainian]
Rozhkov, A. O. (Ed.). (2016). Doslidna sprava v ahronomii: navch. posibnyk: u 2 knyhakh. – Knyha 2. Statystychna obrobka rezultativ doslidzhen. Kharkiv: Maidan [in Ukrainian]
Rakhmetov, D. B., Kalenska, S. M., Fedorchuk, M. I., Rakhmetov, S. D., Kokovikhin, S. V., Fedorchuk, Ye. M., Fedorchuk, V. H., & Polyvoda, O. M. (2017). Metodychni rekomendatsii z optymizatsii tekhnolohii vyroshchuvannia miskantusu v riznykh gruntovo-klimatychnykh zonakh Ukrainy. Kherson: DVNZ «Khersonskyi derzhavnyi ahrarnyi universytet» [in Ukrainian]
Kalinichenko, O. V., & Kulyk, M. I. (2019). Naukovyi tvir “Ekspres-analiz ekonomichnoi efektyvnosti vyroshchuvannia enerhetychnykh kultur v umovakh Lisostepu Ukrainy”. Svidotstvo pro reiestratsiiu avtorskoho prava na tvir № 93178 vid 18.10.2019 [in Ukrainian]
Kalinichenko, O. V., & Kulyk, M. I. (2019). “Metodychni zasady otsinky enerhetychnoi efektyvnosti vyroshchuvannia enerhetychnykh kultur v umovakh Lisostepu Ukrainy” Svidotstvo pro reiestratsiiu avtorskoho prava na tvir № 93177 vid 18.10.2019. [in Ukrainian]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Scientific Progress & Innovations

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Attribution 4.0 International Licens