Morphological and biochemical blood parameters in rats during experimental toxocariasis

Authors

DOI:

https://doi.org/10.31210/spi2025.28.04.17

Keywords:

parasitology, toxocariasis, Toxocara canis, experimental invasion, morphological blood parameters, biochemical blood parameters, liver, rats

Abstract

Toxocariasis is one of the most widespread parasitic diseases, characterized by a complex pathogenesis, prolonged course, and systemic damage to the organs and tissues of the host organism. Migration of Toxocara larvae is accompanied by mechanical tissue injury, development of inflammatory reactions, immune disturbances, and metabolic disorders, which results in significant alterations in the functional state of the hematopoietic system and internal organs, primarily the liver. In this regard, the study of morphological and biochemical blood parameters as informative markers of pathophysiological processes under parasitic invasion conditions is of particular relevance. The aim of the study was to investigate the effect of experimental toxocariasis on morphological and biochemical blood parameters in white rats in order to assess changes in the hematopoietic system, functional state of the liver, and the nature of the inflammatory response. The study was conducted on sexually mature male white rats weighing 150–180 g, maintained under standard vivarium conditions. The animals were divided into a control group and an experimental group, with 10 individuals in each group. Rats in the experimental group were infected orally with invasive Toxocara canis eggs at a dose of 30 eggs per 1 g of body weight. On the 14th day after infection, blood samples were collected to determine morphological and biochemical blood parameters using generally accepted methods. The results demonstrated that the development of experimental toxocariasis in rats was accompanied by pronounced changes in the morphological composition of the blood. In particular, a significant decrease in erythrocyte count and hemoglobin level was detected, indicating the development of anemic syndrome and suppression of bone marrow hematopoietic function. Analysis of erythrocyte indices revealed an imbalance in erythropoiesis processes. At the same time, leukocytosis was observed in the blood of infected animals, accompanied by characteristic shifts in the leukogram, including a decrease in lymphocyte count, an increase in the proportion of neutrophils and monocytes, and marked eosinophilia, which is a typical feature of parasitic invasions. Biochemical studies showed that toxocariasis invasion adversely affects the functional state of the liver. In the blood of rats from the experimental group, a decrease in total protein and albumin levels was observed, indicating suppression of the protein-synthesizing function of the liver. Simultaneously, a significant increase in alanine aminotransferase and aspartate aminotransferase activity was recorded, reflecting the development of cytolytic syndrome and hepatocyte damage. An increased concentration of urea in the blood of infected rats indicates the presence of an inflammatory process and disturbances in nitrogen metabolism. Thus, the development of experimental toxocariasis in white rats is accompanied by complex morphofunctional disorders of the blood system and liver, reflecting the systemic nature of the pathological process.

References

Ardekani, A., Roshanshad, A., Hosseini, S. A., Magnaval, J.-F., Abdollahi, A., & Rostami, A. (2021). Toxocariasis-associated urinary system diseases: a systematic review of reported cases. Transactions of The Royal Society of Tropical Medicine and Hygiene, 116 (7), 668–672. https://doi.org/10.1093/trstmh/trab177

Auer, H., & Walochnik, J. (2020). Toxocariasis and the clinical spectrum. Advances in Parasitology, 109, 111–130. https://doi.org/10.1016/bs.apar.2020.01.005

Beiromvand, M., Rafiei, A., Razmjou, E., & Maraghi, S. (2018). Multiple zoonotic helminth infections in domestic dogs in a rural area of Khuzestan Province in Iran. BMC Veterinary Research, 14 (1), 224. https://doi.org/10.1186/s12917-018-1529-6

Chidumayo, N. N. (2020). Prevalence of Toxocara in dogs and cats in Africa. Advances in Parasitology, 109, 861–871. https://doi.org/10.1016/bs.apar.2020.01.032

Dantas-Torres, F. (2020). Toxocara prevalence in dogs and cats in Brazil. Advances in Parasitology, 109, 715–741. https://doi.org/10.1016/bs.apar.2020.01.028

Daryani, A., Sharif, M., Amouei, A., & Gholami, S. (2009). Prevalence of Toxocara canis in stray dogs, northern Iran. Pakistan Journal of Biological Sciences, 12 (14), 1031–1035. https://doi.org/10.3923/pjbs.2009.1031.1035

Deplazes, P., van Knapen, F., Schweiger, A., & Overgaauw, P. A. (2011). Role of pet dogs and cats in the transmission of helminthic zoonoses in Europe, with a focus on echinococcosis and toxocarosis. Veterinary Parasitology, 182 (1), 41–53. https://doi.org/10.1016/j.vetpar.2011.07.014

Despommier, D. (2003). Toxocariasis: clinical aspects, epidemiology, medical ecology, and molecular aspects. Clinical Microbiology Reviews, 16 (2), 265–272. https://doi.org/10.1128/CMR.16.2.265-272.2003

Dietrich, C. F., Cretu, C., & Dong, Y. (2020). Imaging of toxocariasis. Advances in Parasitology, 109, 165–187. https://doi.org/10.1016/bs.apar.2020.03.001

Fenoy, S., Ollero, M. D., Guillén, J. L., & del Aguila, C. (2001). Animal models in ocular toxocariasis. Journal of Helminthology, 75, 119–124.

Fialho, P. M., & Corrêa, C. R. (2016). A Systematic review of toxocariasis: A neglected but high-prevalence disease in Brazil. The American Journal of Tropical Medicine and Hygiene, 94 (6), 1193–1199. https://doi.org/10.4269/ajtmh.15-0733

Jenkins, E. J. (2020). Toxocara spp. in dogs and cats in Canada. Advances in Parasitology, 109, 641–653. https://doi.org/10.1016/bs.apar.2020.01.026

Ketzis, J. K., & Lucio-Forster, A. (2020). Toxocara canis and Toxocara cati in domestic dogs and cats in the United States, Mexico, Central America and the Caribbean: A review. Advances in Parasitology, 109, 655–714. https://doi.org/10.1016/bs.apar.2020.01.027

Li, H. Y., Zou, Y., Elsheikha, H. M., Xu, Y., Cai, L., Xie, S. C., Zhu, X. Q., & Zheng, W. B. (2022). Lipidomic changes in the liver of beagle dogs associated with Toxocara canis infection. Frontiers in Cellular and Infection Microbiology, 12, 890589. https://doi.org/10.3389/fcimb.2022.890589

López-Osorio, S., Penagos-Tabares, F., & Chaparro-Gutiérrez, J. J. (2020). Prevalence of Toxocara spp. in dogs and cats in South America (excluding Brazil). Advances in parasitology, 109, 743–778. https://doi.org/10.1016/bs.apar.2020.01.029

Mazur-Melewska, K., Mania, A., Sluzewski, W., & Figlerowicz, M. (2020). Clinical pathology of larval toxocariasis. Advances in Parasitology, 109, 153–163. https://doi.org/10.1016/bs.apar.2020.01.004

Mengarda, A. C., Silva, T. C., Silva, A. S., Roquini, D. B., Fernandes, J. P. S., & de Moraes, J. (2023). Toward anthelmintic drug candidates for toxocariasis: Challenges and recent developments. European Journal of Medicinal Chemistry, 251, 115268. https://doi.org/10.1016/j.ejmech.2023.115268

Miller, A. D. (2020). Pathology of larvae and adults in dogs and cats. Advances in Parasitology, 109, 537–544. https://doi.org/10.1016/bs.apar.2020.01.024

Nicoletti, A. (2013). Toxocariasis. Handbook of Clinical Neurology, 114, 217–228. https://doi.org/10.1016/B978-0-444-53490-3.00016-9

Nijsse, R., Ploeger, H. W., Wagenaar, J. A., & Mughini-Gras, L. (2015). Toxocara canis in household dogs: prevalence, risk factors and owners' attitude towards deworming. Parasitology Research, 114 (2), 561–569. https://doi.org/10.1007/s00436-014-4218-9

Overgaauw, P. A. (1997). Aspects of Toxocara epidemiology: toxocarosis in dogs and cats. Critical Reviews in Microbiology, 23 (3), 233–251. https://doi.org/10.3109/10408419709115138

Overgaauw, P., & Nijsse, R. (2020). Prevalence of patent Toxocara spp. infections in dogs and cats in Europe from 1994 to 2019. Advances in Parasitology, 109, 779–800. https://doi.org/10.1016/bs.apar.2020.01.030

Said, W. S., Stybel, V. V., Gutyj, B. V., Pryima, O. B., & Mazur, I. Y. (2020). Protein-synthesizing function and functional state of the liver of dogs at experimental toxocariasis. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22 (98), 132–137. https://doi.org/10.32718/nvlvet9823

Said, W. S., Stybel, V. V., Gutyj, B. V., Pryima, O. B., Sobolta, A. G., Leskiv, K. Y., & Dytiuk, M. P. (2020). The state of the immune system of dogs in experimental toxocariasis. Ukrainian Journal of Veterinary and Agricultural Sciences, 3 (3), 20–24. https://doi.org/10.32718/ujvas3-3.04

Stybel, V. V., Gutyj, B. V., & Said, W. S. (2021). Effect of fenbenzyl and fenbendazole on peroxide intensity oxidation of lipids in the blood of dogs in experimental toxocariasis. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 23 (101), 107–112. https://doi.org/10.32718/nvlvet10118

Stybel, V. V., Gutyj, B. V., Gufriy, D. F., Slivinska, L. G., Kushnir, I. M., Kushnir, V. I., Prijma, O. B., Said, W. S., & Guta, Z. A. (2021). The effect of fenbenzyl and fenbendazole on the morphological parameters of the blood of dogs, with experimental infestation with the pathogen Toxocariasis. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 23 (104), 148–155. https://doi.org/10.32718/nvlvet10424

Tokar, I. V., Stybel, V. V., & Gutyj, B. V. (2024). Intensity of lipid peroxidation processes in the blood of dogs infected with the causative agent of toxocariasis. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 26 (115), 64–69. https://doi.org/10.32718/nvlvet11509

Tokar, I. V., Stybel, V. V., Gutyj, B. V., & Honcharov, O. L. (2024). The state of the system of antioxidant protection of the body of dogs during toxocariasis invasion. Ukrainian Journal of Veterinary and Agricultural Sciences, 7 (2), 60–66. https://doi.org/10.32718/ujvas7-2.09

Vlizlo, V. V., Fedoruk, R. S., Ratych, I. B., Vishchur, O. I., Sharan, M. M., Vudmaska, I. V., Fedorovych, Y. I., Ostapiv, D. D., Stapai, P. V., Buchko, O. M., Hunchak, A. V., Salyha, Y. T., Stefanyshyn, O. M., Hevkan, I. I., Lesyk, Y. V., Simonov, M. R., Nevostruieva, I. V., Khomyn, M. M., Smolianinov, K. B., Havryliak, V. V., Kolisnyk, H. V., Petrukh, I. M., Broda, N. A., Luchka, I. V., Kovalchuk, I. I., Kropyvka, S. Y., Paraniak, N. M., Tkachuk, V. M., Khrabko, M. I., Shtapenko, O. V., Dzen, Y. O., Maksymovych, I. Y., Fedorovych, V. V., Yuskiv, L. L., Dolaichuk, O. P., Ivanytska, L. A., Cirko, Y. M., Kystsiv, V. O., Zahrebelnyi, O. V., Simonov, R. P., Stoianovska, H. M., Kyryliv B. Y., Kuziv, M. I., Maior, K. Y., Kuzmina, N. V., Talokha, N. I., Lisna, B. B., Klymyshyn, D. O., Chokan, T. V., Kaminska, M. V., Kozak, M. R., Oliinyk, A. V., Holova, N. V., Dubinskyi, V. V., Iskra, R. Y., Rivis, Y. F., Tsepko, N. L., Kyshko, V. I., Oleksiuk, N. P., Denys, H. H., Slyvchuk, Y. I., & Martyn, Y. V. (2012). Laboratorni metody doslidzhen’ u biolohiyi, tvarynnytstvi ta veterynarniy medytsyni. Spolom: Lviv [in Ukrainian]

Woodruff, A. W. (1987). Toxocariasis. Journal of the Royal Society of Medicine, 80 (12), 785. https://doi.org/10.1177/014107688708001230

Zheng, W. B., Zou, Y., Liu, G. H., & Zhu, X. Q. (2020). Epidemiology of Toxocara spp. in dogs and cats in mainland China, 2000-2019. Advances in Parasitology, 109, 843–860. https://doi.org/10.1016/bs.apar.2020.01.031

Published

2025-12-26

How to Cite

Tokar, I., Stybel, V., & Gutyj, B. (2025). Morphological and biochemical blood parameters in rats during experimental toxocariasis. Scientific Progress & Innovations, 28(4), 122–126. https://doi.org/10.31210/spi2025.28.04.17