Antibacterial activity of ethanolic clove Syzygium aromaticum extract against multidrug-resistant gram-negative bacteria

Authors

DOI:

https://doi.org/10.31210/spi2025.28.04.19

Keywords:

Syzygium aromaticum, clove extract, antibacterial activity, multidrug-resistant bacteria, eugenol, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae

Abstract

The development of multidrug-resistant (MDR) bacteria is a significant global health concern, making the search for novel antimicrobial drugs crucial. Eugenol, a phenolic compound found in high concentration in Syzygium aromaticum (clove), is well known for its broad-spectrum antibacterial properties. The study aimed to evaluate the antibacterial activity of ethanolic clove Syzygium aromaticum extract against multidrug-resistant Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae). Bacterial isolates (E. coli, K. pneumoniae, and P. aeruginosa) were obtained from animal with infectious diseases and subsequently confirmed by cultivation on several plates of solidified agar media and incubation at 37 °C for 24 hours. Clove powder was processed into ethanolic extracts using standard maceration and evaporation techniques. Four concentrations of antibacterial activity (50 %, 25 %, 12.5 %, and 6.25 %) were tested using the agar well diffusion method. The results showed a concentration-dependent inhibitory effect, with the highest inhibition zones observed at 50 % concentration: E. coli (25 mm), P. aeruginosa (24 mm), and K. pneumoniae (20 mm). No inhibitory activity was observed at the 6.25 % concentration. Among the three microorganisms studied, the E. coli test culture demonstrated the highest sensitivity to ethanolic clove extract at concentrations of 12.5, 25.0, and 50.0 %, with growth inhibition zones of 16.0, 21.0 and 25.0 mm, respectively. In contrast, K. pneumoniae demonstrated the smallest inhibition zone (20 mm) at the highest extract concentration (50 %). Furthermore, research indicates that the combined use of clove extract with conventional antibiotics may result in a synergistic antibacterial effect. In conclusion, clove extract shows encouraging antibacterial activity against MDR Gram-negative bacteria and warrants futher research for potential medical application.

References

Taati Moghadam, M., Khoshbayan, A., Chegini, Z., Farahani, I., & Shariati, A. (2020). Bacteriophages, a new therapeutic solution for inhibiting multidrug-resistant bacteria causing wound infection: lesson from animal models and clinical trials. Drug Design, Development and Therapy, 14, 1867–1883. https://doi.org/10.2147/dddt.s251171

Lau, K. Y., & Rukayadi, Y. (2015). Screening of tropical medicinal plants for sporicidal activity. International Food Research Journal, 22 (1), 421–425.

Haro-González, J. N., Castillo-Herrera, G. A., Martínez- Velázquez, M., & Espinosa-Andrews, H. (2021). Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules, 26 (21), 6387. https://doi.org/10.3390/molecules26216387

Velluti, A., Sanchis, V., Ramos, A. J., Egido, J., & Marın, S. (2003). Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. International Journal of Food Microbiology, 89 (2–3), 145–154. https://doi.org/10.1016/s0168-1605(03)00116-8

Elbestawy, M. K. M., El-Sherbiny, G. M., & Moghannem, S. A. (2023). Antibacterial, antibiofilm and anti-inflammatory activities of eugenol clove essential oil against resistant Helicobacter pylori. Molecules, 28 (6), 2448. https://doi.org/10.3390/molecules28062448

Kavanaugh, N. L., & Ribbeck, K. (2012). Selected Antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Applied and Environmental Microbiology, 78 (11), 4057–4061. https://doi.org/10.1128/aem.07499-11

Al-Tawalbeh, D. M., Alawneh, J. M., Momani, W., & Mayyas, A. (2025). Comparative antibacterial activity of clove extract against Pseudomonas aeruginosa. BMC Complementary Medicine and Therapies, 25 (1), 7. https://doi.org/10.1186/s12906-024-04740-7

Garba, L., Lawan, H. S., Puma, H. U., Abdullahi, M. M., Yusuf, I., & Mukhtar, M. D. (2019). Phytochemical screening and in vitro bacteriostatic effects of Syzigium aromaticum (clove) extracts on clinical bacterial isolates. Journal of Biochemistry, Microbiology and Biotechnology, 7 (1), 5–9. https://doi.org/10.54987/jobimb.v7i1.445

Oteng Mintah, S., Asafo-Agyei, T., Archer, M.-A., Atta-Adjei Junior, P., Boamah, D., Kumadoh, D., Appiah, A., Ocloo, A., Duah Boakye, Y., & Agyare, C. (2019). Medicinal plants for treatment of prevalent diseases. Pharmacognosy - Medicinal Plants, 17, 1–9. https://doi.org/10.5772/intechopen.82049

Kubmarawa, D., Khan, M. E., & Shuaibu, A. (2012). Comparative phytochemical screening and biological evaluation of n-hexane and water extracts of Acacia tortilis. Research in Pharmaceutical Biotechnology, 4 (2), 18–23. https://doi.org/10.5897/rpb11.029

Sanusi, S. B., Audu, Y., Hamza, I., Usman, A., & Makama, P. (2019). Phytochemical analysis and antibacterial activities of ginger (Zingiber officinale) collected from different parts of Kaduna state against selected bacteria isolated from wound. Science World Journal, 14 (4), 62–65.

Chesebrough, M. (2005). Medical laboratory manual for tropical countries. Part 2. Second Edition. New York: Cambridge University Press

Sanusi, S. B., Lawal, S. M., Usman, A., Musa, F. M., & Ardo, B. (2022). Phytochemical analysis and antibacterial activity of stem bark extracts of Detarium microcarpum against bacteria causing gastrointestinal tract infections in humans. Dutse Journal of Pure and Applied Sciences, 8 (1b), 82–89. https://doi.org/10.4314/dujopas.v8i1b.10

Shehu, I., Sanusi, S. B., & Saka, H. K. (2023). Study on antibacterial activity of clove (Syzygium aromaticum) crude extract against Staphylococcus aureus, Escherichia coli, Salmonella sp. and Pseudomonas sp. Science World Journal, 18 (1), 97–100.

Bisht, D., Faujdar, S., & Sharma, A. (2020). Antibacterial activity of Syzygium aromaticum (clove) against uropathogens producing ESBL, MBL, and AmpC beta-lactamase: Are we close to getting a new antibacterial agent? Journal of Family Medicine and Primary Care, 9 (1), 180–186. https://doi.org/10.4103/jfmpc.jfmpc_908_19

Devi, K. P., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130 (1), 107–115. https://doi.org/10.1016/j.jep.2010.04.025

Musthafa, K. S., Balamurugan, K., Pandian, S. K., & Ravi, A. V. (2012). 2,5‐Piperazinedione inhibits quorum sensing‐dependent factor production in Pseudomonas aeruginosa PAO1. Journal of Basic Microbiology, 52 (6), 679–686. https://doi.org/10.1002/jobm.201100292

Abbas, M., Gururani, M. A., Ali, A., Bajwa, S., Hassan, R., Batool, S. W., Imam, M., & Wei, D. (2024). Antimicrobial properties and therapeutic potential of bioactive compounds in Nigella sativa: A review. Molecules, 29 (20), 4914. https://doi.org/10.3390/molecules29204914

Hemaiswarya, S., & Doble, M. (2009). Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine, 16 (11), 997–1005. https://doi.org/10.1016/j.phymed.2009.04.006

Mahboub, R., & Memmou, F. (2016). Antimicrobial properties of 6-bromoeugenol and eugenol. International Letters of Natural Sciences, 53, 57–64. https://doi.org/10.56431/p-4u2geq

Downloads

Published

2025-12-26

How to Cite

Khudaier, A. M. (2025). Antibacterial activity of ethanolic clove Syzygium aromaticum extract against multidrug-resistant gram-negative bacteria. Scientific Progress & Innovations, 28(4), 132–135. https://doi.org/10.31210/spi2025.28.04.19