Physiological aspects of adaptive plasticity of Solanum tuberosum L. varieties and hybrids under variations of the hydrothermal regime in the Polissia region of Ukraine

Authors

DOI:

https://doi.org/10.31210/spi2025.28.04.02

Keywords:

potato, breeding material, plant water homeostasis, adaptive potential, water stress (abiotic), physiological response, genetic differentiation for water deficit tolerance

Abstract

The research aimed to reveal the specific features of adaptive plasticity expression in varieties and hybrids of different maturity groups by analysing the dynamics of physiological indicators of the water regime during critical phases of plant growth. The research was conducted under field conditions at the Polissia Research Department of the Institute for Potato Research, NAAS (Zhytomyr Polissia) in 2024–2025 and involved 45 potato genotypes. Water retention capacity (WRC) and water recovery capacity (WReC) coefficients were assessed under laboratory conditions by sampling leaf material at the following growth stages: budding, flowering, active tuber formation, and yield accumulation. These measurements were taken in parallel with the determination of the hydrothermal coefficient (HTC). A consistent decrease in WRC by 16–20 % and WReC by 15–30 % was observed throughout the growth phases, reflecting the progressive water stress experienced by the plants. Early-ripening varieties showed the highest sensitivity to stress, whereas hybrid material of all maturity groups exhibited relatively greater stability of these parameters. Middle-early hybrids demonstrated a more stable water regime compared with varieties of the same maturity group, particularly in terms of water balance recovery. Mid-ripening genotypes exhibited the highest level of water homeostasis, even in the later stages of ontogenesis (WRC = 59 %, WReC = 86 %). Correlation analysis confirmed the presence of positive relationships between HTC and water regime parameters, differentiated by maturity groups: early genotypes showed a higher sensitivity of water recovery processes to moisture availability (r ≈ 0.90), middle-early genotypes were characterized by moderate and stable correlations, while mid-ripening genotypes displayed the lowest correlation coefficients, reflecting their relative independence from fluctuations in hydrothermal conditions. Hierarchical clustering divided the potato genotype collection into two main groups based on water-exchange strategies: Cluster I (n = 26) with elevated water retention and recovery coefficients (WRC = 69.7 ± 1.9 %, WReC = 98.2 ± 2.4 %) and Cluster II (n = 19) with moderate values (WRC = 64.2 ± 3.1 %, WReC = 91.3 ± 2.8 %). Genotypes and divergent forms with WReC exceeding 100 % were identified. Among the promising sources for drought resistance breeding, the following hybrids were highlighted: (P.14.3/5, P.16.50-16, P.17.44-1, P.19.15-16, P.17.24-26, P.15.56-10, P.17.29/21, P.17.38/16, P.15.5/27, P.17.20-13, P.13.52-11, P.13.42/3, P.17.34/8, P.17.30-3, P.17.39/22) and varieties (Tyras, Mezhyrichka 11, Opillia, Zhytnytsia, Myroslava, Lietana). The obtained results confirm the effectiveness of using water retention and recovery coefficients as markers for assessing the adaptive potential of genotypes and provide a scientific foundation for improving breeding programs towards enhancing potato resistance to abiotic stress.

References

Nedostrelova, L., & Muzyka, T. (2024). Rating of changes in the temperature and humidity regimes of Zhytomyr under conditions of climate warming. Ecological Sciences, 2 (1 (52)), 105–113. https://doi.org/10.32846/2306-9716/2024.eco.1-52.2.20

Shevchenko, O., & Balabukh, V. (2024). The impact of climate change on the natural and agricultural zoning of Ukraine. Ecological Sciences, 5 (56), 222–231. https://doi.org/10.32846/2306-9716/2024.eco.5-56.34

Savchuk, O. I., Pryjmachuk, T. Ju., Shtan’ko, T. A., Mesha, K. V., Drebot, O. V., Kudryk, A. P., & Tsuman, N. V. (2025). Agroecological condition of soil cover of Zhytomyr region in the conditions of changes in climatic factors. Visnyk Agrarnoi Nauky, 103 (4), 65–74. https://doi.org/10.31073/agrovisnyk202504-07

Yatsenko, V. V., & Yatsenko, N. V. (2025). Varietal characteristics of potato yield formation in different maturity groups in the Right-Bank Forest-Steppe of Ukraine. Plant Varieties Studying and Protection, 21 (2), 100–109. https://doi.org/10.21498/2518-1017.21.2.2025.333457

Obidiegwu, J. E. (2015). Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6, 542. https://doi.org/10.3389/fpls.2015.00542

Gervais, T., Creelman, A., Li, X.-Q., Bizimungu, B., De Koeyer, D., & Dahal, K. (2021). Potato response to drought stress: Physiological and growth basis. Frontiers in Plant Science, 12, 698060. https://doi.org/10.3389/fpls.2021.698060

Li, S., Kupriyanovich, Y., Wagg, C., Zheng, F., & Hann, S. (2023). Water deficit duration affects potato plant growth, yield and tuber quality. Agriculture, 13 (10), 2007. https://doi.org/10.3390/agriculture13102007

Li, Q., Li, H., Zhang, L., Zhang, S., & Chen, Y. (2018). Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis. Field Crops Research, 221, 50–60. https://doi.org/10.1016/j.fcr.2018.02.017

Wagg, C., Hann, S., Kupriyanovich, Y., & Li, S. (2021). Timing of short period water stress determines potato plant growth, yield and tuber quality. Agricultural Water Management, 247, 106731. https://doi.org/10.1016/j.agwat.2020.106731

Li, Y., Tang, J., Wang, J., Zhao, G., Yu, Q., Wang, Y., Hu, Q., Zhang, J., Pan, Z., Pan, X., & Xiao, D. (2022). Diverging water-saving potential across China’s potato planting regions. European Journal of Agronomy, 134, 126450. https://doi.org/10.1016/j.eja.2021.126450

Jacques, M. M., Gumiere, S. J., Gallichand, J., Celicourt, P., & Gumiere, T. (2020). Impacts of water stress severity and duration on potato photosynthetic activity and yields. Frontiers in Agronomy, 2, 590312. https://doi.org/10.3389/fagro.2020.590312

Zhang, L. L., Shi, Y., Qi, X., Wang, Q. X., & Cui, L. (2015). Effects of drought stress on the ultrastructure and physiological indexes of leaf cells in three potato varieties. Agricultural Research in the Arid Areas, 33, 75–80.

Martínez-Romero, A., Domínguez, A., & Landeras, G. (2019). Regulated deficit irrigation strategies for different potato cultivars under continental Mediterranean-Atlantic conditions. Agricultural Water Management, 216, 164–176. https://doi.org/10.1016/j.agwat.2019.01.030

Greenwood, D. J., Zhang, K., Hilton, H. W., & Thompson, A. J. (2009). Opportunities for improving irrigation efficiency with quantitative models, soil water sensors and wireless technology. The Journal of Agricultural Science, 148 (1), 1–16. https://doi.org/10.1017/s0021859609990487

Nasir, M. W., & Toth, Z. (2022). Effect of drought stress on potato production: A review. Agronomy, 12 (3), 635. https://doi.org/10.3390/agronomy12030635

Verbeke, S., Padilla-Díaz, C. M., Haesaert, G., & Steppe, K. (2022). Osmotic adjustment in wheat (Triticum aestivum L.) during pre- and post-anthesis drought. Frontiers in Plant Science, 13, 775652. https://doi.org/10.3389/fpls.2022.775652

Elsayed, S., El-Hendawy, S., Dewir, Y. H., Schmidhalter, U., Ibrahim, H. H., Ibrahim, M. M., Elsherbiny, O., & Farouk, M. (2021). Estimating the leaf water status and grain yield of wheat under different irrigation regimes using optimized two- and three-band hyperspectral indices and multivariate regression models. Water, 13 (19), 2666. https://doi.org/10.3390/w13192666

Soltys-Kalina, D., Plich, J., Strzelczyk-Żyta, D., Śliwka, J., & Marczewski, W. (2016). The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breeding Science, 66 (2), 328–331. https://doi.org/10.1270/jsbbs.66.328

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. In Sustainable Agriculture. (pp. 153–188). Springer Netherlands. https://doi.org/10.1007/978-90-481-2666-8_12

Saravia, D., Farfán-Vignolo, E. R., Gutiérrez, R., De Mendiburu, F., Schafleitner, R., Bonierbale, M., & Khan, M. A. (2016). Yield and physiological response of potatoes indicate different strategies to cope with drought stress and nitrogen fertilization. American Journal of Potato Research, 93 (3), 288–295. https://doi.org/10.1007/s12230-016-9505-9

Hill, D., Nelson, D., Hammond, J., & Bell, L. (2021). Morphophysiology of potato (Solanum tuberosum) in response to drought stress: Paving the way forward. Frontiers in Plant Science, 11, 597554. https://doi.org/10.3389/fpls.2020.597554

Zhang, P., Yang, X., Manevski, K., Li, S., Wei, Z., Andersen, M. N., & Liu, F. (2022). Physiological and growth responses of potato (Solanum tuberosum L.) to air temperature and relative humidity under soil water deficits. Plants, 11 (9), 1126. https://doi.org/10.3390/plants11091126

Fang, G., Yang, S., Ruan, B., Ye, G., He, M., Su, W., Zhou, Y., Wang, J., & Yang, S. (2024). Research progress on physiological, biochemical, and molecular mechanisms of potato in response to drought and high temperature. Horticulturae, 10 (8), 827. https://doi.org/10.3390/horticulturae10080827

Cabello, R., Monneveux, P., De Mendiburu, F., & Bonierbale, M. (2013). Comparison of yield based drought tolerance indices in improved varieties, genetic stocks and landraces of potato (Solanum tuberosum L.). Euphytica, 193 (2), 147–156. https://doi.org/10.1007/s10681-013-0887-1

Martínez, I., Muñoz, M., Acuña, I., & Uribe, M. (2021). Evaluating the drought tolerance of seven potato varieties on volcanic ash soils in a medium-term trial. Frontiers in Plant Science, 12, 693060. https://doi.org/10.3389/fpls.2021.693060

Pysarenko, N. V., Sydorchuk, V. I., Zakharchuk, N. V., & Oliinyk, T. M. (2023). Evaluation of potato varieties for drought resistance in the conditions of the Central Polissya of Ukraine. Ahrarni Innovatsii, 17, 186–196. https://doi.org/10.32848/agrar.innov.2023.17.27

Rosytska, N. V. (2015). Adaptyvna reaktsiia roslyn riznykh zhyttievykh form za umovy posukhy / Extended abstract of candidate’s thesis. Instytut ahroekolohii i pryrodokorystuvannia, Kyiv [in Ukrainian]

Oliinyk, T. M., Sidakova, O. V., Zakharchuk, N. A., & Symonenko, N. V. (2017). Studying the potential of the initial potato material with the aim of breeding for drought resistance. Plant Varieties Studying and Protection, 13 (4), 361–366. https://doi.org/10.21498/2518-1017.13.4.2017.117733

Sydorchuk, V. I., & Pysarenko, N. V. (2021). Vyvchennia sortiv ta perspektyvnykh hibrydiv kartopli na posukhostiikist. «Honcharivski chytannia»: Materialy Mizhnarodnoi naukovo-praktychnoi konferentsii, prysviachenoi 92-richchiu z dnia narodzhennia doktora silskohospodarskykh nauk, profesora Honcharova Mykoly Dem‘ianovycha (25-travnia 2021 r.). (pp. 62–65). Sumy: Sumskyi natsionalnyi ahrarnyi universytet [in Ukrainian]

Pysarenko, N. V., Sydorchuk, V. I., & Zakharchuk, N. A. (2021). Study of resistance of potato varieties to drought in the conditions of the Central Polissya of Ukraine. Agriculture and Plant Sciences: Theory and Practice, 2, 91–97. https://doi.org/10.54651/agri.2021.02.12

Pysarenko, N. V., Sydorchuk, V. I., & Zakharchuk, N. A. (2024). Evaluation of potato varieties for drought tolerance, ecological plasticity, adaptability, and consumer qualities at early stages of cultivation. Vegetable and Melon Growing, 74, 19–32. https://doi.org/10.32717/0131-0062-2023-74-19-32

Hryhoriuk, I. P., Tkachov, V. I., Nyzhnyk, T. P., Mytsko, V. M., & Voitseshyna, N. I. (2002). Patent na vynakhid No 45055 A. Sposib otsinky stiikosti sortiv kartopli do posukhy. Retrieved from: https://sis.nipo.gov.ua/uk/search/detail/354825/ [in Ukrainian]

Polevoy, A., Barsukova, O., Husieva, K., Zhygailo, O., Volvach, O., Kyrnasivska, N., Tolmachova, A., Zhygailo, T., Danilova, N., & Kostiukievych, T. (2024). The climate change impact on the development of droughts in Ukraine. Journal of Ecological Engineering, 25 (6), 194–205. https://doi.org/10.12911/22998993/187276

Blum, A. (2011). Plant breeding for water-limited environments. New York: Springer. https://doi.org/10.1007/978-1-4419-7491-4

Romero, A. P., Alarcón, A., Valbuena, R. I., & Galeano, C. H. (2017). Physiological assessment of water stress in potato using spectral information. Frontiers in Plant Science, 8, 1608. https://doi.org/10.3389/fpls.2017.01608

Shi, S., Fan, M., Iwama, K., Li, F., Zhang, Z., & Jia, L. (2015). Physiological basis of drought tolerance in potato grown under long-term water deficiency. International Journal of Plant Production, 9 (2), 305–320.

Monneveux, P., Ramírez, D. A., & Pino, M.-T. (2013). Drought tolerance in potato (S. tuberosum L.). Plant Science, 205–206, 76–86. https://doi.org/10.1016/j.plantsci.2013.01.011

Lal, M. K., Tiwari, R. K., Kumar, A., Dey, A., Kumar, R., Kumar, D., Jaiswal, A., Changan, S. S., Raigond, P., Dutt, S., Luthra, S. K., Mandal, S., Singh, M. P., Paul, V., & Singh, B. (2022). Mechanistic Concept of physiological, biochemical, and molecular responses of the potato crop to heat and drought stress. Plants, 11 (21), 2857. https://doi.org/10.3390/plants11212857

Alvarez-Morezuelas, A., Barandalla, L., Ritter, E., Lacuesta, M., & Ruiz de Galarreta, J. I. (2022). Physiological response and yield components under greenhouse drought stress conditions in potato. Journal of Plant Physiology, 278, 153790. https://doi.org/10.1016/j.jplph.2022.153790

Aliche, E. B., Gengler, T., Hoendervangers, I., Oortwijn, M., Bachem, C. W. B., Borm, T., Visser, R. G. F., & van der Linden, C. G. (2021). Transcriptomic responses of potato to drought stress. Potato Research, 65 (2), 289–305. https://doi.org/10.1007/s11540-021-09527-8

Cabello, R., De Mendiburu, F., Bonierbale, M., Monneveux, P., Roca, W., & Chujoy, E. (2012). Large-scale evaluation of potato improved varieties, genetic stocks and landraces for drought tolerance. American Journal of Potato Research, 89 (5), 400–410. https://doi.org/10.1007/s12230-012-9260-5

Schafleitner, R., Gutierrez Rosales, R. O., Gaudin, A., Alvarado Aliaga, C. A., Martinez, G. N., Tincopa Marca, L. R., Bolivar, L. A., Delgado, F. M., Simon, R., & Bonierbale, M. (2007). Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiology and Biochemistry, 45 (9), 673–690. https://doi.org/10.1016/j.plaphy.2007.06.003

Published

2025-12-26

How to Cite

Pysarenko, N., Furdyha, M., Zakharchuk, N., & Hordiienko, V. (2025). Physiological aspects of adaptive plasticity of Solanum tuberosum L. varieties and hybrids under variations of the hydrothermal regime in the Polissia region of Ukraine. Scientific Progress & Innovations, 28(4), 10–22. https://doi.org/10.31210/spi2025.28.04.02

Issue

Section

AGRICULTURE. PLANT CULTIVATION