Blue cornflower (Centaurea cyanus L.) as a component of agrocenosis: analysis of allelopathic mechanisms, agroecological consequences and control strategies

Authors

DOI:

https://doi.org/10.31210/spi2025.28.04.13

Keywords:

cornflower, Centaurea cyanus, allelopathy, allelochemicals, winter grain crops, herbicide resistance, integrated weed control

Abstract

This review presents an analysis of the results of experimental studies on the nature of the allelopathic interaction of cornflower (Centaurea cyanus L.) with winter agricultural crops. The purpose of the work was to summarize current knowledge on the biochemical mechanisms of phytotoxicity, allelochemicals of cornflower, agroecological consequences of weed infestation, and strategies for integrated control of cornflower in agrocoenoses. Differential crop sensitivity to cornflower allelochemicals was established in winter grain crops. In this regard, the phenomenon of hormesis was identified, where the action of low concentrations of aqueous leaf extract of cornflower (5–12 %) increased seed germination of grains by 8–16 %, while increasing to 25 % decreased it by 38–40 % compared with the control. Based on research results conducted in various countries, the profile of cornflower allelochemicals was found to include volatile organic compounds, phenolic acids (chlorogenic acid 15–45 mg/100 g dry weight), flavonoids (apigenin 10–30 mg/100 g), and anthocyanins. The phytotoxicity mechanisms of the complex of these compounds involve disruption of cell membrane permeability, inhibition of ATP synthesis in mitochondria, suppression of DNA topoisomerases, and activity of key glycolysis enzymes. Meanwhile, allelochemicals can spread through root exudates (concentration 100–500 μM in rhizosphere fluid), microbiological decomposition of residues, and gas diffusion of volatile compounds. It was also established that cornflower limits the impact on the rhizosphere microbiocenosis and demonstrates autotoxicity, inhibiting its own seed germination (by 15–22 % at densities exceeding 30–40 plants/m²). It was concluded that the allelopathic activity of cornflower can cause a yield reduction (up to 65 %) when exceeding the economic threshold of harmfulness (ETH) in agrocoenoses. Moreover, there is a problem of cornflower resistance to herbicides, as well as the phenomenon of enhanced allelopathic activity due to increased synthesis of phenolic compounds. Therefore, strategies for integrated control of cornflower in agrocoenoses of agricultural crops are recommended, including rotation of winter crops with spring crops to disrupt the cornflower life cycle; use of cover crops with allelopathic properties (barley, rye, sorghum), which suppress cornflower germination by 20–35 %; agronomic practices (delayed sowing, increasing the seeding rate by 15–25 %, alternating deep plowing with minimal tillage); and regular population monitoring.

References

Aiyer, H., Fofana, B., Fraser, T., Caldwell, C., McKenzie-Gopsill, A., Mills, A., & Foster, A. (2022). Choice of cover crop influences soil fungal and bacterial communities in Prince Edward Island, Canada. Canadian Journal of Microbiology, 68 (7), 465–482. https://doi.org/10.1139/cjm-2021-0360

Balmer, O., Géneau, C. E., Belz, E., Weishaupt, B., Förderer, G., Moos, S., Ditner, N., Juric, I., & Luka, H. (2014). Wildflower companion plants increase pest parasitation and yield in cabbage fields: Experimental demonstration and call for caution. Biological Control, 76, 19–27. https://doi.org/10.1016/j.biocontrol.2014.04.008

Bartee, S. N. (2023). Understanding Crop Residue Decomposition. Helena Agri-Enterprises, LLC. Retrieved from: https://helenaagri.com/fieldlink/blog/understanding-crop-residue-decomposition/

Boršić, I., Susanna, A., Bancheva, S., & Garcia-Jacas, N. (2011). Centaurea Sect. Cyanus: Nuclear phylogeny, biogeography, and life-form evolution. International Journal of Plant Sciences, 172 (2), 238–249. https://doi.org/10.1086/657645

Boutin, C., Montroy, K., Mathiassen, S. K., Carpenter, D. J., Strandberg, B., & Damgaard, C. (2019). Effects of sublethal doses of herbicides on the competitive interactions between 2 nontarget plants, Centaurea cyanus L. and Silene noctiflora L. Environmental Toxicology and Chemistry, 38 (9), 2053–2064. https://doi.org/10.1002/etc.4506

Chellem, S. R., Kishore, C. V. L., Reddy, G. S. V., Akshay, D. V. S., Kalpana, K., Lavanya, P., & Choragudi, K. H. (2024). Symbiotic relationships between nitrogen-fixing bacteria and leguminous plants ecological and evolutionary perspectives: A review. Uttar Pradesh Journal of Zoology, 45 (13), 145–160. https://doi.org/10.56557/upjoz/2024/v45i134143

Cheng, F., & Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science, 6, 1020. https://doi.org/10.3389/fpls.2015.01020

D’Agostino, M., & Abeli, T. (2025). Biological flora of Central Europe: Centaurea cyanus L. Perspectives in Plant Ecology, Evolution and Systematics, 68, 125874. https://doi.org/10.1016/j.ppees.2025.125874

Dascaliuc, A. P. (2018). Hormesis, optimization of screening and practical application of plant growth regulators. In Materials of the IV International Scientific-Practical Conference dedicated to the 95th anniversary of variety testing in Ukraine (Kyiv, June 7, 2018) (p. 139–1142). Kyiv: Institute of Genetics, Physiology and Plant Protection

Denisow, B. (2006). Blooming and pollen production of several representatives of the genus Centaurea L. Journal of Apicultural Science, 50 (2), 20–31.

Dhima, K. V., Vasilakoglou, I. B., Eleftherohorinos, I. G., & Lithourgidis, A. S. (2006). Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. Crop Science, 46 (1), 345–352. https://doi.org/10.2135/cropsci2005-0186

Friedman, J., & Waller, G. R. (1985). Allelopathy and autotoxicity. Trends in Biochemical Sciences, 10 (2), 47–50. https://doi.org/10.1016/0968-0004(85)90224-5

Gawlik-Dziki, U., Wrzesińska-Krupa, B., Nowak, R., Pietrzak, W., Zyprych-Walczak, J., & Obrępalska-Stęplowska, A. (2023). Herbicide resistance status impacts the profile of non- anthocyanin polyphenolics and some phytomedical properties of edible cornflower (Centaurea cyanus L.) flowers. Scientific Reports, 13 (1), 11538. https://doi.org/10.1038/s41598-023-38520-z

Głąb, L., Sowiński, J., Bough, R., & Dayan, F. E. (2017). Allelopathic potential of sorghum (Sorghum bicolor (L.) Moench) in weed control: A comprehensive review. Advances in Agronomy, 145, 43–95. https://doi.org/10.1016/bs.agron.2017.05.001

Guillemin, J.-P., Alrustom, B., & Darmency, H. (2021). Estimated effects of cornflower presence on winter wheat. Biological Agriculture & Horticulture, 38 (2), 113–123. https://doi.org/10.1080/01448765.2021.2006783

Haratym, W., Weryszko-Chmielewska, E., & Konarska, A. (2019). Microstructural and histochemical analysis of aboveground organs of Centaurea cyanus used in herbal medicine. Protoplasma, 257 (1), 285–298. https://doi.org/10.1007/s00709-019-01437-4

Hnini, M., Rabeh, K., & Oubohssaine, M. (2024). Interactions between beneficial soil microorganisms (PGPR and AMF) and host plants for environmental restoration: A systematic review. Plant Stress, 11, 100391. https://doi.org/10.1016/j.stress.2024.100391

Ibáñez, F., Wall, L., & Fabra, A. (2016). Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. Journal of Experimental Botany, erw387. https://doi.org/10.1093/jxb/erw387

Kalemba, D., & Synowiec, A. (2019). Agrobiological interactions of essential oils of two menthol mints: mentha piperita and mentha arvensis. Molecules, 25 (1), 59. https://doi.org/10.3390/molecules25010059

Kong, C.-H., Li, Z., Li, F.-L., Xia, X.-X., & Wang, P. (2024). Chemically mediated plant–plant interactions: Allelopathy and allelobiosis. Plants, 13 (5), 626. https://doi.org/10.3390/plants13050626

Landi, M. (2015). Can Anthocyanins be part of the metal homeostasis network in plant? American Journal of Agricultural and Biological Sciences, 10 (4), 170–177. https://doi.org/10.3844/ajabssp.2015.170.177

Lim, T. K. (2013). Centaurea cyanus. Edible Medicinal And Non-Medicinal Plants, 245–249. https://doi.org/10.1007/978-94-007-7395-0_16

Marczewska-Kolasa, K., Bortniak, M., Sekutowski, T., & Domaradzki, K. (2017). Influence of water extracts from cornflower on germination and growth of cereals seedlings. Journal of Research and Applications in Agricultural Engineering”, 62 (3), 208–211.

Marczewska-Kolasa, K., Sekutowski, T., & Bortniak, M. (2012). Determination of allelopathy Centaurea cyanus seeds by using bioassays. Progress in Plant Protection, 52 (3), 733–736.

Marczewska-Kolasa, K., Sekutowski, T., & Bortniak, M. (2012). Determination of allelopathy Centaurea cyanus seeds by using bioassays. Progress in Plant Protection, 52 (3), 733–736.

Pietkova, I., Unhurian, L., & Horiacha, L. (2022). Identification and quantitative content of chlorogenic and rosmarinic acids in Centaurea cyanus L. and Centaurea montana L. herbs. Annals of Mechnikov’s Institute, 1, 10–14.

Pospielov, I. S., & Onipko, V. V. (2025). Voloshka synia (Centaurea cyanus L.): dekoratyvnyi potentsial ta ekolohichni perevahy u landshaftnomu dyzaini ta ozelenenni. Materialy Vseukrainskoi naukovo-praktychnoi konferentsii Bioriznomanittia u konteksti staloho rozvytku: teoriia, praktyka, metodychni aspekty vyvchennia u zakladakh nauky ta osvity (prysviachena 65-richchiu zasnuvannia dendroparku zahalnoderzhavnoho znachennia «Kryvorudskyi»). (6 chervnia 2025 r., s. Kryva Ruda, Semenivskyi r-n, Poltavska obl). (pp. 165–169). Poltava: Astraia Retrieved from: https://zenodo.org/records/15533270 [in Ukrainian]

Reigosa, M. J., Pedrol, N., & González, L. (2006). Allelopathy: A physiological process with ecological implications. Springer

Schumacher, M., Witty, R., & Gerhards, R. (2024). Reintroduction strategies for rare arable weeds in agricultural practice and their influence on yield. Weed Research, 64 (5), 384–394. https://doi.org/10.1111/wre.12659

Sobko, M., Medvid, S., Amons, S., Zakharchenko, E., Nechyporenko, V., Masyk, I., Pylypenko, V., Kolodnenko, N., Rozhko, V., Karpenko, O., Toryanik, V., & Selezen, O. (2023). Weed infestation of winter wheat in organic crop rotation and economic efficiency of its cultivation. Modern Phytomorphology, 17, 127–131. https://doi.org/10.32782/2226-3063-2023.17.01

Stankiewicz-Kosyl, M., Wińska-Krysiak, M., Wrochna, M., Haliniarz, M., & Marcinkowska, K. (2024). Regional diversity of the ALS gene and hormesis due to tribenuron-methyl in Centaurea cyanus L. Scientific Reports, 14 (1), 25197. https://doi.org/10.1038/s41598-024-76345-6

Stankiewicz-Kosyl, M., & Haliniarz, M. (2023). Diversified germination strategies of Centaurea cyanus populations resistant to ALS inhibitors. Plant Protection Science, 59 (4), 379–388. https://doi.org/10.17221/62/2023-pps

Stoliar, S. H., & Melnyk, M. V. (2024). Structure of segetal vegetation in hybrid winter rye crops in the Forest-Steppe of Ukraine. Taurian Scientific Herald, 140, 250–257. https://doi.org/10.32782/2226-0099.2024.140.32

Sulborska-Różycka, A., Weryszko-Chmielewska, E., Polak, B., Stefańczyk, B., Matysik-Woźniak, A., & Rejdak, R. (2022). Secretory products in petals of Centaurea cyanus L. flowers: A histochemistry, ultrastructure, and phytochemical study of volatile compounds. Molecules, 27 (4), 1371. https://doi.org/10.3390/molecules27041371

Sun, Y., Chen, L., Zhang, S., Miao, Y., Zhang, Y., Li, Z., Zhao, J., Yu, L., Zhang, J., Qin, X., & Yao, Y. (2022). Plant interaction patterns shape the soil microbial community and nutrient cycling in different intercropping scenarios of aromatic plant species. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.888789

Swetha, T. N., Rajasekar, B., Hudge, B. V., Mishra, P., & Harshitha, D. N. (2023). Phytoremediation of heavy metal contaminated soils using various flower and ornamentals. International Journal of Plant & Soil Science, 35 (18), 747–752. https://doi.org/10.9734/ijpss/2023/v35i183341

Treutter, D. (2010). Managing phenol contents in crop plants by phy-tochemical farming and breeding – visions and constraints. Inter-national Journal of Molecular Sciences, 11 (3), 807–857. https://doi.org/10.3390/ijms11030807

Tsytsiura, Y. (2024). Allelopathic effects of annual weeds on germination and seedling growth of oilseed radish (Raphanus sativus L. var. oleiformis Pers.). Acta Fytotechnica et Zootechnica, 27 (1), 77–97. https://doi.org/10.15414/afz.2024.27.01.77-97

Utilizing Microbes to Accelerate Corn Residue Decomposition. (2025). Golden Harvest. Retrieved from: https://www.goldenharvestseeds.com/agronomy/articles/utilizing-microbes-to-accelerate-corn-residue-decomposition

Vinje, E. (2013). Allelopathic Plants & Types of Allelopathy. Planet Natural. Retrieved from: https://www.planetnatural.com/allelopathy/

Wacławowicz, R., Tendziagolska, E., Synowiec, A., Bocianowski, J., Podsiadło, C., Domaradzki, K., Marcinkowska, K., Kwiecińska-Poppe, E., & Piekarczyk, M. (2022). Competition between winter wheat and cornflower (Centaurea cyanus L.) resistant or susceptible to herbicides under varying environmental conditions in Poland. Agronomy, 12 (11), 2751. https://doi.org/10.3390/agronomy12112751

Wagenitz, G., & Hellwig, F. H. (1996). Evolution of characters and phylogeny of the Centaureinae. In D. J. N. Hind & H. G. Beentje (Eds.), Compositae: Systematics (pp. 491–510). Kew, London: Royal Botanic Gardens

Wang, C., Liu, Z., Wang, Z., Pang, W., Zhang, L., Wen, Z., Zhao, Y., Sun, J., Wang, Z.-Y., & Yang, C. (2022). Effects of autotoxicity and allelopathy on seed germination and seedling growth in Medicago truncatula. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.908426

Weed Fact Sheet Centaurea cyanus. (2023). HRAC Europe, 1–3. Retrieved from: http://hracglobal.com/europe/files/EHRAC-Weed-Fact-Sheet-CENCY.pdf

Published

2025-12-26

How to Cite

Pospielov, I., & Onipko, V. (2025). Blue cornflower (Centaurea cyanus L.) as a component of agrocenosis: analysis of allelopathic mechanisms, agroecological consequences and control strategies. Scientific Progress & Innovations, 28(4), 94–100. https://doi.org/10.31210/spi2025.28.04.13

Issue

Section

AGRICULTURE. PLANT CULTIVATION

Most read articles by the same author(s)

1 2 > >>