Antibiotic resistance: causes, consequences, ways to overcome

Authors

DOI:

https://doi.org/10.31210/spi2025.28.04.25

Keywords:

antibiotics, resistance, global health, companion animals, global monitoring, hospital-acquired infections

Abstract

The aim of the review was to systematize and analyze current scientific data on the causes of antibiotic resistance formation in veterinary medicine, its epizootiological and clinical consequences, as well as to identify the main directions for the prevention and control of the spread of resistant microorganisms in veterinary therapeutic practice. According to the World Health Organization (WHO), antibiotic resistance represents a significant global public health threat. At present, several major causes of resistance development can be identified. Among them, the leading role is played by the excessive and unjustified use of antimicrobial agents in medicine and their application in various sectors of animal husbandry, as well as the frequent prescription of antibiotics without appropriate indications, which significantly contributes to the formation of microbial resistance. Approximately 50 % of antimicrobial prescriptions in practice are considered unjustified or “prophylactic.” Additional factors contributing to the development of antibiotic resistance include self-medication, the lack of antimicrobial susceptibility testing, incorrect dosing, and premature discontinuation of treatment courses. In particular, when clinical symptoms subside, animal owners often discontinue therapy on their own initiative, which promotes the survival and spread of resistant bacterial strains. Non-compliance with hygiene and sanitary control measures is another important factor facilitating the dissemination of resistant microorganisms. As a result of natural bacterial adaptation mechanisms, a reduction or complete loss of the effectiveness of antimicrobial agents occurs. Factors that stimulate mutational processes include the use of subtherapeutic doses of antibiotics, the lack of pathogen susceptibility to the selected drug, and the presence of antimicrobial residues in food products. Modification of protein targets and the transfer of resistance genes between bacteria via plasmids or bacteriophages may also accelerate the development of antibiotic resistance. The predicted consequences for global health include the loss of microbial susceptibility to last-line antibiotics, such as carbapenems, vancomycin, and colistin, which necessitates the development of new antimicrobial agents and the implementation of strict control over their rational use.

References

Antimicrobial resistance global report on surveillance : 2014 summary. (2014). World Health Organization. Retrieved from: https://www.who.int/publications/i/item/WHO-HSE-PED-AIP-2014.2

Antibiotic resistant threats in the United States 2019. (2019). Centers for Disease Control and Prevention. Retrieved from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf

Chinemerem Nwobodo, D., Ugwu, M. C., Oliseloke Anie, C., Al‐Ouqaili, M. T. S., Chinedu Ikem, J., Victor Chigozie, U., & Saki, M. (2022). Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. Journal of Clinical Laboratory Analysis, 36 (9), e24655. https://doi.org/10.1002/jcla.24655

Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic resistance in bacteria – a review. Antibiotics, 11 (8), 1079. https://doi.org/10.3390/antibiotics11081079

Broens, E. M., & van Geijlswijk, I. M. (2018). Prudent use of antimicrobials in exotic animal medicine. Veterinary Clinics of North America: Exotic Animal Practice, 21 (2), 341–353. https://doi.org/10.1016/j.cvex.2018.01.014

Magnusson, U. (2020). Prudent and effective antimicrobial use in a diverse livestock and consumer’s world. Journal of Animal Science, 98 (Suppl. 1), S4–S8. https://doi.org/10.1093/jas/skaa148

Tóth, A. G., Tóth, I., Rózsa, B., Dubecz, A., Patai, Á. V., Németh, T., Kaplan, S., Kovács, E. G., Makrai, L., & Solymosi, N. (2022). Canine saliva as a possible source of antimicrobial resistance genes. Antibiotics, 11 (11), 1490. https://doi.org/10.3390/antibiotics11111490

Manian, F. A. (2003). Asymptomatic Nasal Carriage of mupirocin‐resistant, methicillin‐resistant Staphylococcus aureus (MRSA) in a pet dog associated with MRSA infection in household contacts. Clinical Infectious Diseases, 36 (2), e26–e28. https://doi.org/10.1086/344772

Guardabassi, L., Loeber, M. E., & Jacobson, A. (2004). Transmission of multiple antimicrobial-resistant Staphylococcus intermedius between dogs affected by deep pyoderma and their owners. Veterinary Microbiology, 98 (1), 23–27. https://doi.org/10.1016/j.vetmic.2003.09.021

Frank, L. A., Kania, S. A., Kirzeder, E. M., Eberlein, L. C., & Bemis, D. A. (2009). Risk of colonization or gene transfer to owners of dogs with meticillin‐resistant Staphylococcus pseudintermedius. Veterinary Dermatology, 20 (5–6), 496–501. https://doi.org/10.1111/j.1365-3164.2009.00826.x

Wolfs, T. F. W., Duim, B., Geelen, S. P. M., Rigter, A., Thomson-Carter, F., Fleer, A., & Wagenaar, J. A. (2001). Neonatal sepsis by Campylobacter jejuni: Genetically proven transmission from a household puppy. Clinical Infectious Diseases, 32 (5), e97–e99. https://doi.org/10.1086/319224

Simjee, S., White, D. G., McDermott, P. F., Wagner, D. D., Zervos, M. J., Donabedian, S. M., English, L. L., Hayes, J. R., & Walker, R. D. (2002). Characterization of Tn 1546 in vancomycin-resistant Enterococcus faecium isolated from canine urinary tract infections: Evidence of gene exchange between human and animal enterococci. Journal of Clinical Microbiology, 40 (12), 4659–4665. https://doi.org/10.1128/jcm.40.12.4659-4665.2002

Ways to stay healthy around animals. (2025). Healthy Pets, Healthy People. Retrieved from: https://www.cdc.gov/healthy-pets/about/index.html

Categorisation of antibiotics in the European Union. (2019). European Medicines Agency. Retrieved from: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific-advice-impact-public-health-animal-health-use-antibiotics-animals_en.pdf

WHO warns of widespread resistance to common antibiotics worldwide. (2025). World Health Organization. Retrieved from: https://www.who.int/news/item/13-10-2025-who-warns-of-widespread-resistance-to-common-antibiotics-worldwide

Rice, L. B. (2008). Federal Funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. The Journal of Infectious Diseases, 197 (8), 1079–1081. https://doi.org/10.1086/533452

Rice, L. B. (2010). Progress and Challenges in implementing the research on ESKAPE pathogens. Infection Control & Hospital Epidemiology, 31 (S1), S7–S10. https://doi.org/10.1086/655995

Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18 (3), 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

Sommer, M. O. A., Munck, C., Toft-Kehler, R. V., & Andersson, D. I. (2017). Prediction of antibiotic resistance: time for a new preclinical paradigm? Nature Reviews Microbiology, 15 (11), 689–696. https://doi.org/10.1038/nrmicro.2017.75

Beatson, S. A., & Walker, M. J. (2014). Tracking antibiotic resistance. Science, 345 (6203), 1454–1455. https://doi.org/10.1126/science.1260471

Potteth, U. S., Upadhyay, T., Saini, S., & Saraogi, I. (2021). Novel antibacterial targets in protein biogenesis pathways. ChemBioChem, 23 (4), e202100459. https://doi.org/10.1002/cbic.202100459

De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial Resistance in ESKAPE Pathogens. Clinical Microbiology Reviews, 33 (3). https://doi.org/10.1128/cmr.00181-19

Gwenzi, W., Chaukura, N., Muisa-Zikali, N., Teta, C., Musvuugwa, T., Rzymski, P., & Abia, A. L. K. (2021). Insects, rodents, and pets as reservoirs, vectors, and sentinels of antimicrobial resistance. Antibiotics, 10 (1), 68. https://doi.org/10.3390/antibiotics10010068

Pomba, C., Rantala, M., Greko, C., Baptiste, K. E., Catry, B., van Duijkeren, E., Mateus, A., Moreno, M. A., Pyörälä, S., Ružauskas, M., Sanders, P., Teale, C., Threlfall, E. J., Kunsagi, Z., Torren-Edo, J., Jukes, H., & Törneke, K. (2016). Public health risk of antimicrobial resistance transfer from companion animals. Journal of Antimicrobial Chemotherapy, 72 (4), 957–968. https://doi.org/10.1093/jac/dkw481

Santajit, S., & Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International, 2016, 1–8. https://doi.org/10.1155/2016/2475067

Meade, E., Slattery, M. A., & Garvey, M. (2024). Antimicrobial resistance profile of zoonotic clinically relevant WHO priority pathogens. Pathogens, 13 (11), 1006. https://doi.org/10.3390/pathogens13111006

Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC (Text with EEA Relevance). (2019). Official Journal of the European Union, 7.1.2019. Retrieved from: https://www.legislation.gov.uk/eur/2019/6/pdfs/eur_20190006_adopted_en.pdf

Schmerold, I., van Geijlswijk, I., & Gehring, R. (2023). European regulations on the use of antibiotics in veterinary medicine. European Journal of Pharmaceutical Sciences, 189, 106473. https://doi.org/10.1016/j.ejps.2023.106473

Ahmad, I., Huang, L., Hao, H., Sanders, P., & Yuan, Z. (2016). Application of PK/PD modeling in veterinary field: Dose optimization and drug resistance prediction. BioMed Research International, 2016, 1–12. https://doi.org/10.1155/2016/5465678

Luo, W., Chen, D., Wu, M., Li, Z., Tao, Y., Liu, Q., Pan, Y., Qu, W., Yuan, Z., & Xie, S. (2019). Pharmacokinetics / Pharmacodynamics models of veterinary antimicrobial agents. Journal of Veterinary Science, 20 (5). https://doi.org/10.4142/jvs.2019.20.e40

Toutain, P., Pelligand, L., Lees, P., Bousquet‐Mélou, A., Ferran, A. A., & Turnidge, J. D. (2020). The pharmacokinetic / pharmacodynamic paradigm for antimicrobial drugs in veterinary medicine: Recent advances and critical appraisal. Journal of Veterinary Pharmacology and Therapeutics, 44 (2), 172–200. Portico. https://doi.org/10.1111/jvp.12917

Melekwe, G. O., Uwagie-Ero, E. A., Zoaka, H. A., & Odigie, E. A. (2018). Comparative clinical effectiveness of preoperative skin antiseptic preparations of chlorhexidine gluconate and povidone iodine for preventing surgical site infections in dogs. International Journal of Veterinary Science and Medicine, 6 (1), 113–116. https://doi.org/10.1016/j.ijvsm.2018.03.005

Chernai, D. S., & Rublenko, S. V. (2025). Microbial contamination of air and surfaces in veterinary clinics: contamination level and species composition of isolates. Scientific and Technical Bulletin оf State Scientific Research Control Institute of Veterinary Medical Products and Fodder Additives аnd Institute of Animal Biology, 26 (2), 341–346. https://doi.org/10.36359/scivp.2025-26-2.36

Sebola, D. C., Oguttu, J. W., Kock, M. M., & Qekwana, D. N. (2023). Hospital-acquired and zoonotic bacteria from a veterinary hospital and their associated antimicrobial-susceptibility profiles: A systematic review. Frontiers in Veterinary Science, 9, 1087052. https://doi.org/10.3389/fvets.2022.1087052

Dancer, S. J. (2009). The role of environmental cleaning in the control of hospital-acquired infection. Journal of Hospital Infection, 73 (4), 378–385. https://doi.org/10.1016/j.jhin.2009.03.030

Gehring, R., Mochel, J. P., & Schmerold, I. (2023). Understanding the background and clinical significance of the WHO, WOAH, and EMA classifications of antimicrobials to mitigate antimicrobial resistance. Frontiers in Veterinary Science, 10, 1153048. https://doi.org/10.3389/fvets.2023.1153048

Global Antimicrobial Resistance and Use Surveillance System (GLASS). (n.d.). World Health Organization. Retrieved from: https://www.who.int/initiatives/glass

Published

2025-12-26

How to Cite

Rublenko, S., & Chernai, D. (2025). Antibiotic resistance: causes, consequences, ways to overcome. Scientific Progress & Innovations, 28(4), 163–167. https://doi.org/10.31210/spi2025.28.04.25

Most read articles by the same author(s)