Antibiotic resistance: causes, consequences, ways to overcome
DOI:
https://doi.org/10.31210/spi2025.28.04.25Keywords:
antibiotics, resistance, global health, companion animals, global monitoring, hospital-acquired infectionsAbstract
The aim of the review was to systematize and analyze current scientific data on the causes of antibiotic resistance formation in veterinary medicine, its epizootiological and clinical consequences, as well as to identify the main directions for the prevention and control of the spread of resistant microorganisms in veterinary therapeutic practice. According to the World Health Organization (WHO), antibiotic resistance represents a significant global public health threat. At present, several major causes of resistance development can be identified. Among them, the leading role is played by the excessive and unjustified use of antimicrobial agents in medicine and their application in various sectors of animal husbandry, as well as the frequent prescription of antibiotics without appropriate indications, which significantly contributes to the formation of microbial resistance. Approximately 50 % of antimicrobial prescriptions in practice are considered unjustified or “prophylactic.” Additional factors contributing to the development of antibiotic resistance include self-medication, the lack of antimicrobial susceptibility testing, incorrect dosing, and premature discontinuation of treatment courses. In particular, when clinical symptoms subside, animal owners often discontinue therapy on their own initiative, which promotes the survival and spread of resistant bacterial strains. Non-compliance with hygiene and sanitary control measures is another important factor facilitating the dissemination of resistant microorganisms. As a result of natural bacterial adaptation mechanisms, a reduction or complete loss of the effectiveness of antimicrobial agents occurs. Factors that stimulate mutational processes include the use of subtherapeutic doses of antibiotics, the lack of pathogen susceptibility to the selected drug, and the presence of antimicrobial residues in food products. Modification of protein targets and the transfer of resistance genes between bacteria via plasmids or bacteriophages may also accelerate the development of antibiotic resistance. The predicted consequences for global health include the loss of microbial susceptibility to last-line antibiotics, such as carbapenems, vancomycin, and colistin, which necessitates the development of new antimicrobial agents and the implementation of strict control over their rational use.
References
Antimicrobial resistance global report on surveillance : 2014 summary. (2014). World Health Organization. Retrieved from: https://www.who.int/publications/i/item/WHO-HSE-PED-AIP-2014.2
Antibiotic resistant threats in the United States 2019. (2019). Centers for Disease Control and Prevention. Retrieved from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
Chinemerem Nwobodo, D., Ugwu, M. C., Oliseloke Anie, C., Al‐Ouqaili, M. T. S., Chinedu Ikem, J., Victor Chigozie, U., & Saki, M. (2022). Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. Journal of Clinical Laboratory Analysis, 36 (9), e24655. https://doi.org/10.1002/jcla.24655
Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic resistance in bacteria – a review. Antibiotics, 11 (8), 1079. https://doi.org/10.3390/antibiotics11081079
Broens, E. M., & van Geijlswijk, I. M. (2018). Prudent use of antimicrobials in exotic animal medicine. Veterinary Clinics of North America: Exotic Animal Practice, 21 (2), 341–353. https://doi.org/10.1016/j.cvex.2018.01.014
Magnusson, U. (2020). Prudent and effective antimicrobial use in a diverse livestock and consumer’s world. Journal of Animal Science, 98 (Suppl. 1), S4–S8. https://doi.org/10.1093/jas/skaa148
Tóth, A. G., Tóth, I., Rózsa, B., Dubecz, A., Patai, Á. V., Németh, T., Kaplan, S., Kovács, E. G., Makrai, L., & Solymosi, N. (2022). Canine saliva as a possible source of antimicrobial resistance genes. Antibiotics, 11 (11), 1490. https://doi.org/10.3390/antibiotics11111490
Manian, F. A. (2003). Asymptomatic Nasal Carriage of mupirocin‐resistant, methicillin‐resistant Staphylococcus aureus (MRSA) in a pet dog associated with MRSA infection in household contacts. Clinical Infectious Diseases, 36 (2), e26–e28. https://doi.org/10.1086/344772
Guardabassi, L., Loeber, M. E., & Jacobson, A. (2004). Transmission of multiple antimicrobial-resistant Staphylococcus intermedius between dogs affected by deep pyoderma and their owners. Veterinary Microbiology, 98 (1), 23–27. https://doi.org/10.1016/j.vetmic.2003.09.021
Frank, L. A., Kania, S. A., Kirzeder, E. M., Eberlein, L. C., & Bemis, D. A. (2009). Risk of colonization or gene transfer to owners of dogs with meticillin‐resistant Staphylococcus pseudintermedius. Veterinary Dermatology, 20 (5–6), 496–501. https://doi.org/10.1111/j.1365-3164.2009.00826.x
Wolfs, T. F. W., Duim, B., Geelen, S. P. M., Rigter, A., Thomson-Carter, F., Fleer, A., & Wagenaar, J. A. (2001). Neonatal sepsis by Campylobacter jejuni: Genetically proven transmission from a household puppy. Clinical Infectious Diseases, 32 (5), e97–e99. https://doi.org/10.1086/319224
Simjee, S., White, D. G., McDermott, P. F., Wagner, D. D., Zervos, M. J., Donabedian, S. M., English, L. L., Hayes, J. R., & Walker, R. D. (2002). Characterization of Tn 1546 in vancomycin-resistant Enterococcus faecium isolated from canine urinary tract infections: Evidence of gene exchange between human and animal enterococci. Journal of Clinical Microbiology, 40 (12), 4659–4665. https://doi.org/10.1128/jcm.40.12.4659-4665.2002
Ways to stay healthy around animals. (2025). Healthy Pets, Healthy People. Retrieved from: https://www.cdc.gov/healthy-pets/about/index.html
Categorisation of antibiotics in the European Union. (2019). European Medicines Agency. Retrieved from: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific-advice-impact-public-health-animal-health-use-antibiotics-animals_en.pdf
WHO warns of widespread resistance to common antibiotics worldwide. (2025). World Health Organization. Retrieved from: https://www.who.int/news/item/13-10-2025-who-warns-of-widespread-resistance-to-common-antibiotics-worldwide
Rice, L. B. (2008). Federal Funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. The Journal of Infectious Diseases, 197 (8), 1079–1081. https://doi.org/10.1086/533452
Rice, L. B. (2010). Progress and Challenges in implementing the research on ESKAPE pathogens. Infection Control & Hospital Epidemiology, 31 (S1), S7–S10. https://doi.org/10.1086/655995
Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18 (3), 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Sommer, M. O. A., Munck, C., Toft-Kehler, R. V., & Andersson, D. I. (2017). Prediction of antibiotic resistance: time for a new preclinical paradigm? Nature Reviews Microbiology, 15 (11), 689–696. https://doi.org/10.1038/nrmicro.2017.75
Beatson, S. A., & Walker, M. J. (2014). Tracking antibiotic resistance. Science, 345 (6203), 1454–1455. https://doi.org/10.1126/science.1260471
Potteth, U. S., Upadhyay, T., Saini, S., & Saraogi, I. (2021). Novel antibacterial targets in protein biogenesis pathways. ChemBioChem, 23 (4), e202100459. https://doi.org/10.1002/cbic.202100459
De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial Resistance in ESKAPE Pathogens. Clinical Microbiology Reviews, 33 (3). https://doi.org/10.1128/cmr.00181-19
Gwenzi, W., Chaukura, N., Muisa-Zikali, N., Teta, C., Musvuugwa, T., Rzymski, P., & Abia, A. L. K. (2021). Insects, rodents, and pets as reservoirs, vectors, and sentinels of antimicrobial resistance. Antibiotics, 10 (1), 68. https://doi.org/10.3390/antibiotics10010068
Pomba, C., Rantala, M., Greko, C., Baptiste, K. E., Catry, B., van Duijkeren, E., Mateus, A., Moreno, M. A., Pyörälä, S., Ružauskas, M., Sanders, P., Teale, C., Threlfall, E. J., Kunsagi, Z., Torren-Edo, J., Jukes, H., & Törneke, K. (2016). Public health risk of antimicrobial resistance transfer from companion animals. Journal of Antimicrobial Chemotherapy, 72 (4), 957–968. https://doi.org/10.1093/jac/dkw481
Santajit, S., & Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International, 2016, 1–8. https://doi.org/10.1155/2016/2475067
Meade, E., Slattery, M. A., & Garvey, M. (2024). Antimicrobial resistance profile of zoonotic clinically relevant WHO priority pathogens. Pathogens, 13 (11), 1006. https://doi.org/10.3390/pathogens13111006
Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC (Text with EEA Relevance). (2019). Official Journal of the European Union, 7.1.2019. Retrieved from: https://www.legislation.gov.uk/eur/2019/6/pdfs/eur_20190006_adopted_en.pdf
Schmerold, I., van Geijlswijk, I., & Gehring, R. (2023). European regulations on the use of antibiotics in veterinary medicine. European Journal of Pharmaceutical Sciences, 189, 106473. https://doi.org/10.1016/j.ejps.2023.106473
Ahmad, I., Huang, L., Hao, H., Sanders, P., & Yuan, Z. (2016). Application of PK/PD modeling in veterinary field: Dose optimization and drug resistance prediction. BioMed Research International, 2016, 1–12. https://doi.org/10.1155/2016/5465678
Luo, W., Chen, D., Wu, M., Li, Z., Tao, Y., Liu, Q., Pan, Y., Qu, W., Yuan, Z., & Xie, S. (2019). Pharmacokinetics / Pharmacodynamics models of veterinary antimicrobial agents. Journal of Veterinary Science, 20 (5). https://doi.org/10.4142/jvs.2019.20.e40
Toutain, P., Pelligand, L., Lees, P., Bousquet‐Mélou, A., Ferran, A. A., & Turnidge, J. D. (2020). The pharmacokinetic / pharmacodynamic paradigm for antimicrobial drugs in veterinary medicine: Recent advances and critical appraisal. Journal of Veterinary Pharmacology and Therapeutics, 44 (2), 172–200. Portico. https://doi.org/10.1111/jvp.12917
Melekwe, G. O., Uwagie-Ero, E. A., Zoaka, H. A., & Odigie, E. A. (2018). Comparative clinical effectiveness of preoperative skin antiseptic preparations of chlorhexidine gluconate and povidone iodine for preventing surgical site infections in dogs. International Journal of Veterinary Science and Medicine, 6 (1), 113–116. https://doi.org/10.1016/j.ijvsm.2018.03.005
Chernai, D. S., & Rublenko, S. V. (2025). Microbial contamination of air and surfaces in veterinary clinics: contamination level and species composition of isolates. Scientific and Technical Bulletin оf State Scientific Research Control Institute of Veterinary Medical Products and Fodder Additives аnd Institute of Animal Biology, 26 (2), 341–346. https://doi.org/10.36359/scivp.2025-26-2.36
Sebola, D. C., Oguttu, J. W., Kock, M. M., & Qekwana, D. N. (2023). Hospital-acquired and zoonotic bacteria from a veterinary hospital and their associated antimicrobial-susceptibility profiles: A systematic review. Frontiers in Veterinary Science, 9, 1087052. https://doi.org/10.3389/fvets.2022.1087052
Dancer, S. J. (2009). The role of environmental cleaning in the control of hospital-acquired infection. Journal of Hospital Infection, 73 (4), 378–385. https://doi.org/10.1016/j.jhin.2009.03.030
Gehring, R., Mochel, J. P., & Schmerold, I. (2023). Understanding the background and clinical significance of the WHO, WOAH, and EMA classifications of antimicrobials to mitigate antimicrobial resistance. Frontiers in Veterinary Science, 10, 1153048. https://doi.org/10.3389/fvets.2023.1153048
Global Antimicrobial Resistance and Use Surveillance System (GLASS). (n.d.). World Health Organization. Retrieved from: https://www.who.int/initiatives/glass
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Scientific Progress & Innovations

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Attribution 4.0 International Licens